{"title":"Using machine learning to simultaneously quantify multiple cognitive components of episodic memory","authors":"Soroush Mirjalili, Audrey Duarte","doi":"10.1038/s41467-025-58265-9","DOIUrl":null,"url":null,"abstract":"<p>Why do we remember some events but forget others? Previous studies attempting to decode successful vs. unsuccessful brain states to investigate this question have met with limited success, potentially due, in part, to assessing episodic memory as a unidimensional process, despite evidence that multiple domains contribute to episodic encoding. Using a machine learning algorithm known as “transfer learning”, we leveraged visual perception, sustained attention, and selective attention brain states to better predict episodic memory performance from trial-to-trial encoding electroencephalography (EEG) activity. We found that this multidimensional treatment of memory decoding improved prediction performance compared to traditional, unidimensional, methods, with each cognitive domain explaining unique variance in decoding of successful encoding-related neural activity. Importantly, this approach could be applied to cognitive domains outside of memory. Overall, this study provides critical insight into the underlying reasons why some events are remembered while others are not.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58265-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Why do we remember some events but forget others? Previous studies attempting to decode successful vs. unsuccessful brain states to investigate this question have met with limited success, potentially due, in part, to assessing episodic memory as a unidimensional process, despite evidence that multiple domains contribute to episodic encoding. Using a machine learning algorithm known as “transfer learning”, we leveraged visual perception, sustained attention, and selective attention brain states to better predict episodic memory performance from trial-to-trial encoding electroencephalography (EEG) activity. We found that this multidimensional treatment of memory decoding improved prediction performance compared to traditional, unidimensional, methods, with each cognitive domain explaining unique variance in decoding of successful encoding-related neural activity. Importantly, this approach could be applied to cognitive domains outside of memory. Overall, this study provides critical insight into the underlying reasons why some events are remembered while others are not.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.