Monolithically integrated ultra-wideband photonic receiver on thin film lithium niobate.

Marco Moller de Freitas, Xiaofeng Zhu, Md Saheed Ullah, Shouyuan Shi, Peng Yao, Garrett Schneider, Dennis W Prather
{"title":"Monolithically integrated ultra-wideband photonic receiver on thin film lithium niobate.","authors":"Marco Moller de Freitas, Xiaofeng Zhu, Md Saheed Ullah, Shouyuan Shi, Peng Yao, Garrett Schneider, Dennis W Prather","doi":"10.1038/s44172-025-00393-7","DOIUrl":null,"url":null,"abstract":"<p><p>As the demand for data capacity in wireless networks and mobile communications continues to grow, they are moving toward higher carrier frequencies and wider modulation bandwidths. Unfortunately, electronic device performance degrades in association with increased frequency and modulation bandwidths, which inhibits the application of conventional microwave architectures, particularly in the millimeter wave and terahertz regimes. Alternatively, microwave photonic systems address these challenges by offering device and system performance with exceptionally higher operational bandwidths. The challenge, however, is the ability to monolithically integrate both electronic and photonic devices into functional components that provide ultra-wideband performance up into the millimeter wave and terahertz regions. In particular, such integration remains a major technical challenge due to the high dielectric permittivity of commonly used material platforms for photonic integrated circuits, such as silicon, indium phosphide, and lithium niobate. In this paper, we present a photonic receiver consisting of a broadband antenna and a low-drive-voltage modulator monolithically integrated on thin-film lithium niobate with a quartz handle. A free-space data link is demonstrated, achieving data rates up to 2.7 Gbps using quadrature amplitude modulation, with error vector magnitude as low as 3%. This work demonstrates the potential of thin-film lithium niobate for high-frequency, monolithically integrated radiofrequency and photonic devices to enable ultra-wideband millimeter wave-to-terahertz communication systems.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"55"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00393-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand for data capacity in wireless networks and mobile communications continues to grow, they are moving toward higher carrier frequencies and wider modulation bandwidths. Unfortunately, electronic device performance degrades in association with increased frequency and modulation bandwidths, which inhibits the application of conventional microwave architectures, particularly in the millimeter wave and terahertz regimes. Alternatively, microwave photonic systems address these challenges by offering device and system performance with exceptionally higher operational bandwidths. The challenge, however, is the ability to monolithically integrate both electronic and photonic devices into functional components that provide ultra-wideband performance up into the millimeter wave and terahertz regions. In particular, such integration remains a major technical challenge due to the high dielectric permittivity of commonly used material platforms for photonic integrated circuits, such as silicon, indium phosphide, and lithium niobate. In this paper, we present a photonic receiver consisting of a broadband antenna and a low-drive-voltage modulator monolithically integrated on thin-film lithium niobate with a quartz handle. A free-space data link is demonstrated, achieving data rates up to 2.7 Gbps using quadrature amplitude modulation, with error vector magnitude as low as 3%. This work demonstrates the potential of thin-film lithium niobate for high-frequency, monolithically integrated radiofrequency and photonic devices to enable ultra-wideband millimeter wave-to-terahertz communication systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信