Maximizing the efficiency of single-stage partial nitrification/Anammox granule processes and balancing microbial competition using insights of a numerical model study.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Ahmed Elsayed, Taeho Lee, Younggy Kim
{"title":"Maximizing the efficiency of single-stage partial nitrification/Anammox granule processes and balancing microbial competition using insights of a numerical model study.","authors":"Ahmed Elsayed, Taeho Lee, Younggy Kim","doi":"10.1002/wer.70059","DOIUrl":null,"url":null,"abstract":"<p><p>Granulation is an efficient approach for the rapid growth of anaerobic ammonia oxidation (Anammox) bacteria ( <math> <semantics> <mrow><msub><mi>X</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {X}_{ANA} $$</annotation></semantics> </math> ) to limit the growth of nitrite-oxidizing bacteria ( <math> <semantics> <mrow><msub><mi>X</mi> <mi>NOB</mi></msub> </mrow> <annotation>$$ {X}_{NOB} $$</annotation></semantics> </math> ). However, the high sensitivity of Anammox bacteria to operational conditions and the competition with other microorganisms lead to a critical challenge in maintaining sufficient <math> <semantics> <mrow><msub><mi>X</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {X}_{ANA} $$</annotation></semantics> </math> population. In this study, a one-dimensional steady-state model was developed and calibrated to investigate the kinetic constants of <math> <semantics> <mrow><msub><mi>X</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {X}_{ANA} $$</annotation></semantics> </math> growth and mass transport in individual granules, including the liquid film. According to the model calibration results, the range of the maximum specific growth rate constant of <math> <semantics><mrow><mspace></mspace> <msub><mi>X</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {X}_{ANA} $$</annotation></semantics> </math> ( <math> <semantics> <mrow><msub><mi>μ</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {\\mu}_{ANA} $$</annotation></semantics> </math> ) was 0.033 to 0.10 d<sup>-1</sup>. In addition the other kinetic constants of <math> <semantics> <mrow><msub><mi>X</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {X}_{ANA} $$</annotation></semantics> </math> were 0.003 d<sup>-1</sup> for decay rate constant ( <math> <semantics> <mrow><msub><mi>b</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {b}_{ANA} $$</annotation></semantics> </math> ), 0.10 mg-O<sub>2</sub>/L for oxygen half-saturation constant ( <math> <semantics> <mrow><msubsup><mi>K</mi> <msub><mi>O</mi> <mn>2</mn></msub> <mi>ANA</mi></msubsup> </mrow> <annotation>$$ {K}_{O_2}^{ANA} $$</annotation></semantics> </math> ), 0.07 mg-N/L for ammonia half-saturation constant ( <math> <semantics> <mrow><msubsup><mi>K</mi> <msub><mi>NH</mi> <mn>4</mn></msub> <mi>ANA</mi></msubsup> </mrow> <annotation>$$ {K}_{NH_4}^{ANA} $$</annotation></semantics> </math> ), and 0.05 mg-N/L for nitrite half-saturation constant ( <math> <semantics> <mrow><msubsup><mi>K</mi> <msub><mi>NO</mi> <mn>2</mn></msub> <mi>ANA</mi></msubsup> </mrow> <annotation>$$ {K}_{NO_2}^{ANA} $$</annotation></semantics> </math> ). The model simulation results showed that the dissolved oxygen of about 0.10 mg-O<sub>2</sub>/L was found to be optimal to maintain high <math> <semantics> <mrow><msub><mi>X</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {X}_{ANA} $$</annotation></semantics> </math> population. In addition, minimal COD concentration is required to control heterotrophs ( <math> <semantics> <mrow><msub><mi>X</mi> <mi>H</mi></msub> </mrow> <annotation>$$ {X}_H $$</annotation></semantics> </math> ) and improve ammonia oxidation by ammonia-oxidizing bacteria ( <math> <semantics> <mrow><msub><mi>X</mi> <mi>AOB</mi></msub> </mrow> <annotation>$$ {X}_{AOB} $$</annotation></semantics> </math> ). It was also emphasized that moderate mixing conditions ( <math> <semantics> <mrow><msub><mi>L</mi> <mi>f</mi></msub> </mrow> <annotation>$$ {L}_f $$</annotation></semantics> </math> <math> <semantics><mrow><mo>≅</mo></mrow> <annotation>$$ \\cong $$</annotation></semantics> </math> 100 μm) are preferable to decrease the diffusion of oxygen to the deep layers of the granules, controlling the competition between <math> <semantics> <mrow><msub><mi>X</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {X}_{ANA} $$</annotation></semantics> </math> and <math> <semantics> <mrow><msub><mi>X</mi> <mi>NOB</mi></msub> </mrow> <annotation>$$ {X}_{NOB} $$</annotation></semantics> </math> . A single-factor relative sensitivity analysis (RSA) on microbial kinetics revealed that <math> <semantics> <mrow><msub><mi>μ</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {\\mu}_{ANA} $$</annotation></semantics> </math> is the governing factor in the efficient operation of the single-stage PN/A processes. In addition, it was found that nitrite concentration is a rate-limiting parameter on the success of the process due to the competition between <math> <semantics> <mrow><msub><mi>X</mi> <mi>ANA</mi></msub> </mrow> <annotation>$$ {X}_{ANA} $$</annotation></semantics> </math> and <math> <semantics> <mrow><msub><mi>X</mi> <mi>NOB</mi></msub> </mrow> <annotation>$$ {X}_{NOB} $$</annotation></semantics> </math> . These findings can be used to enhance our understanding on the importance of microbial competition and mass transport in the single-stage PN/A process. PRACTITIONER POINTS: A one-dimensional steady-state model was developed and calibrated for simulating the single-stage partial nitrification/Anammox (PN/A) granule process. Moderate liquid films ( <math> <semantics> <mrow><msub><mi>L</mi> <mi>f</mi></msub> </mrow> <annotation>$$ {L}_f $$</annotation></semantics> </math> <math> <semantics><mrow><mo>≅</mo></mrow> <annotation>$$ \\cong $$</annotation></semantics> </math> 100 μm) are preferable for better performance of Anammox growth in single-stage PN/A processes. Moderate dissolved oxygen (DO <math> <semantics><mrow><mo>≅</mo></mrow> <annotation>$$ \\cong $$</annotation></semantics> </math> 0.10 mg-O<sub>2</sub>/L) is highly recommended for efficient growth of Anammox bacteria in single-stage PN/A granulation. Minimal COD (COD <math> <semantics><mrow><mo>≅</mo></mrow> <annotation>$$ \\cong $$</annotation></semantics> </math> 0) is preferable for successful operation of the single-stage PN/A granule process. Nitrite concentration is a rate-limiting parameter on the competition between Anammox and nitrite-oxidizing bacteria in the single-stage PN/A processes.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 3","pages":"e70059"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70059","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Granulation is an efficient approach for the rapid growth of anaerobic ammonia oxidation (Anammox) bacteria ( X ANA $$ {X}_{ANA} $$ ) to limit the growth of nitrite-oxidizing bacteria ( X NOB $$ {X}_{NOB} $$ ). However, the high sensitivity of Anammox bacteria to operational conditions and the competition with other microorganisms lead to a critical challenge in maintaining sufficient X ANA $$ {X}_{ANA} $$ population. In this study, a one-dimensional steady-state model was developed and calibrated to investigate the kinetic constants of X ANA $$ {X}_{ANA} $$ growth and mass transport in individual granules, including the liquid film. According to the model calibration results, the range of the maximum specific growth rate constant of X ANA $$ {X}_{ANA} $$ ( μ ANA $$ {\mu}_{ANA} $$ ) was 0.033 to 0.10 d-1. In addition the other kinetic constants of X ANA $$ {X}_{ANA} $$ were 0.003 d-1 for decay rate constant ( b ANA $$ {b}_{ANA} $$ ), 0.10 mg-O2/L for oxygen half-saturation constant ( K O 2 ANA $$ {K}_{O_2}^{ANA} $$ ), 0.07 mg-N/L for ammonia half-saturation constant ( K NH 4 ANA $$ {K}_{NH_4}^{ANA} $$ ), and 0.05 mg-N/L for nitrite half-saturation constant ( K NO 2 ANA $$ {K}_{NO_2}^{ANA} $$ ). The model simulation results showed that the dissolved oxygen of about 0.10 mg-O2/L was found to be optimal to maintain high X ANA $$ {X}_{ANA} $$ population. In addition, minimal COD concentration is required to control heterotrophs ( X H $$ {X}_H $$ ) and improve ammonia oxidation by ammonia-oxidizing bacteria ( X AOB $$ {X}_{AOB} $$ ). It was also emphasized that moderate mixing conditions ( L f $$ {L}_f $$ $$ \cong $$ 100 μm) are preferable to decrease the diffusion of oxygen to the deep layers of the granules, controlling the competition between X ANA $$ {X}_{ANA} $$ and X NOB $$ {X}_{NOB} $$ . A single-factor relative sensitivity analysis (RSA) on microbial kinetics revealed that μ ANA $$ {\mu}_{ANA} $$ is the governing factor in the efficient operation of the single-stage PN/A processes. In addition, it was found that nitrite concentration is a rate-limiting parameter on the success of the process due to the competition between X ANA $$ {X}_{ANA} $$ and X NOB $$ {X}_{NOB} $$ . These findings can be used to enhance our understanding on the importance of microbial competition and mass transport in the single-stage PN/A process. PRACTITIONER POINTS: A one-dimensional steady-state model was developed and calibrated for simulating the single-stage partial nitrification/Anammox (PN/A) granule process. Moderate liquid films ( L f $$ {L}_f $$ $$ \cong $$ 100 μm) are preferable for better performance of Anammox growth in single-stage PN/A processes. Moderate dissolved oxygen (DO $$ \cong $$ 0.10 mg-O2/L) is highly recommended for efficient growth of Anammox bacteria in single-stage PN/A granulation. Minimal COD (COD $$ \cong $$ 0) is preferable for successful operation of the single-stage PN/A granule process. Nitrite concentration is a rate-limiting parameter on the competition between Anammox and nitrite-oxidizing bacteria in the single-stage PN/A processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信