Songshan Zhu, Jun Yin, Xiaotong Lu, Dan Jiang, Rui Chen, Kai Cui, Wanjun He, Na Huang, Guangxian Xu
{"title":"Influence of experimental variables on spheroid attributes.","authors":"Songshan Zhu, Jun Yin, Xiaotong Lu, Dan Jiang, Rui Chen, Kai Cui, Wanjun He, Na Huang, Guangxian Xu","doi":"10.1038/s41598-025-92037-1","DOIUrl":null,"url":null,"abstract":"<p><p>The adoption of three-dimensional (3D) cell culture systems represents a critical advancement in biomedical research, better mimicking complex 3D tissue environments than traditional two-dimensional (2D) models. However, variability in experimental outcomes has limited their reproducibility and clinical translation. Here, we systematically analyzed 32,000 spheroid images to identify key parameters influencing 3D model reliability. Our large-scale analysis revealed that oxygen levels significantly affect spheroid size and necrosis, while media composition (e.g., glucose and calcium concentrations) and serum levels (0-20%) critically regulate cell viability and structural integrity. For instance, spheroids cultured in 3% oxygen exhibited reduced dimensions and increased necrosis, whereas serum concentrations above 10% promoted dense spheroid formation with distinct necrotic and proliferative zones. By integrating single-cell RNA sequencing and automated image analysis, we uncovered dynamic gene expression patterns linked to spheroid maturation and hypoxia. These findings provide actionable guidelines for standardizing 3D culture protocols, addressing critical reproducibility challenges. Our work establishes a robust framework to enhance the reliability of 3D models in drug testing, personalized medicine, and tumor biology, facilitating their broader adoption in translational research.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9751"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928536/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92037-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The adoption of three-dimensional (3D) cell culture systems represents a critical advancement in biomedical research, better mimicking complex 3D tissue environments than traditional two-dimensional (2D) models. However, variability in experimental outcomes has limited their reproducibility and clinical translation. Here, we systematically analyzed 32,000 spheroid images to identify key parameters influencing 3D model reliability. Our large-scale analysis revealed that oxygen levels significantly affect spheroid size and necrosis, while media composition (e.g., glucose and calcium concentrations) and serum levels (0-20%) critically regulate cell viability and structural integrity. For instance, spheroids cultured in 3% oxygen exhibited reduced dimensions and increased necrosis, whereas serum concentrations above 10% promoted dense spheroid formation with distinct necrotic and proliferative zones. By integrating single-cell RNA sequencing and automated image analysis, we uncovered dynamic gene expression patterns linked to spheroid maturation and hypoxia. These findings provide actionable guidelines for standardizing 3D culture protocols, addressing critical reproducibility challenges. Our work establishes a robust framework to enhance the reliability of 3D models in drug testing, personalized medicine, and tumor biology, facilitating their broader adoption in translational research.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.