{"title":"Construction of a traffic flow prediction model based on neural ordinary differential equations and Spatiotemporal adaptive networks.","authors":"Li Ma, Yunshun Wang, Xiaoshi Lv, Lijun Guo","doi":"10.1038/s41598-025-92859-z","DOIUrl":null,"url":null,"abstract":"<p><p>To address the issue of spatiotemporal illusion in short-term traffic flow prediction and deeply explore the underlying short-term traffic flow network characteristics, a traffic flow prediction model that combines long-term spatiotemporal heterogeneity with short-term spatiotemporal features is proposed. In the long-term spatiotemporal branch, the Transformer structure is employed, and a self-supervised masking mechanism is utilized to pretrain the heterogeneity in long-term temporal and spatial dimensions separately. Additionally, a spatiotemporal adaptive module is designed, which adapts to and guides short-term traffic flow prediction across time series and traffic flow networks. In the short-term spatiotemporal branch, a recurrent neural ordinary differential equation (ODE) module is devised. This module is capable of continuously and dynamically adjusting short-term spatiotemporal features, better capturing and exploring potential short-term spatiotemporal characteristics. Through multiple cycles, this module gradually and accurately extracts and compresses road network features, integrates the adapted spatiotemporal heterogeneity, and reconstructs future short-term traffic flows in the decoder. Experiments are conducted on four traffic flow and two traffic speed datasets, showing that compared to traditional time series models, the proposed model's prediction accuracy indicators have relatively improved by 45.09%, 39.14%, and 0.47% on average; compared to recurrent neural network (RNN) series models, the improvements are 18.91%, 15.77%, and 0.18% on average; compared to graph convolution series models, the improvements are 21.31%, 16.65%, and 0.21% on average; and compared to Transformer series models, the improvements are 6.57%, 6.23%, and 0.05% on average. The model's general applicability and good performance in transportation speed scenarios were verified through a multi-step experiment conducted on the transportation speed dataset.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9787"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928730/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92859-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To address the issue of spatiotemporal illusion in short-term traffic flow prediction and deeply explore the underlying short-term traffic flow network characteristics, a traffic flow prediction model that combines long-term spatiotemporal heterogeneity with short-term spatiotemporal features is proposed. In the long-term spatiotemporal branch, the Transformer structure is employed, and a self-supervised masking mechanism is utilized to pretrain the heterogeneity in long-term temporal and spatial dimensions separately. Additionally, a spatiotemporal adaptive module is designed, which adapts to and guides short-term traffic flow prediction across time series and traffic flow networks. In the short-term spatiotemporal branch, a recurrent neural ordinary differential equation (ODE) module is devised. This module is capable of continuously and dynamically adjusting short-term spatiotemporal features, better capturing and exploring potential short-term spatiotemporal characteristics. Through multiple cycles, this module gradually and accurately extracts and compresses road network features, integrates the adapted spatiotemporal heterogeneity, and reconstructs future short-term traffic flows in the decoder. Experiments are conducted on four traffic flow and two traffic speed datasets, showing that compared to traditional time series models, the proposed model's prediction accuracy indicators have relatively improved by 45.09%, 39.14%, and 0.47% on average; compared to recurrent neural network (RNN) series models, the improvements are 18.91%, 15.77%, and 0.18% on average; compared to graph convolution series models, the improvements are 21.31%, 16.65%, and 0.21% on average; and compared to Transformer series models, the improvements are 6.57%, 6.23%, and 0.05% on average. The model's general applicability and good performance in transportation speed scenarios were verified through a multi-step experiment conducted on the transportation speed dataset.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.