{"title":"Abnormal iron metabolism in the zona incerta in Parkinson's disease mice.","authors":"Minxia Xiu, Yanhong Liu, Zhaobo Wang, Jing Zhang, Yaying Shi, Junxia Xie, Limin Shi","doi":"10.1007/s00702-025-02913-3","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and abnormal iron metabolism. While most of the current studies have focused on nigral iron deposition, there is still limited research into the role of iron in other brain regions. The zona incerta (ZI) is a heterogeneous subthalamic region and has extensive connections with the basal ganglia nucleus. Clinically, the ZI has been recognized as a new therapeutic target for PD. Deep brain stimulation of the ZI has been reported to relieve motor symptoms and experimental heat pain in patients with PD. The aim of the present study is to evaluate changes in iron levels in the ZI. Two neurotoxins, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), were used to prepare PD mice. By immunostaining, we first measured the success of MPTP or 6-OHDA injury. We found that the expressions of tyrosine hydroxylase were decreased after MPTP or 6-OHDA treatment. Secondly, we observed the changes of iron metabolism using Perls' iron staining and western blots. Our results showed that the numbers of iron-positive cells were significantly increased in the SN and ZI of MPTP/6-OHDA-treated mice. Moreover, the expression levels of ferritin and divalent metal transporter 1 (DMT1) in the ZI were also increased in the PD group. Glutathione peroxidase 4 (GPX4), a marker of ferroptosis, was also detected. Western blots revealed that MPTP significantly down-regulated the level of GPX4 in the ZI. As glial cells activation and neuroinflammation play important roles in the ion deposition, we finally investigated the microglial and astrocyte activation and inflammatory factors. These results suggested increased iron levels and inflammation may be present in the ZI in PD mice.</p>","PeriodicalId":16579,"journal":{"name":"Journal of Neural Transmission","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00702-025-02913-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and abnormal iron metabolism. While most of the current studies have focused on nigral iron deposition, there is still limited research into the role of iron in other brain regions. The zona incerta (ZI) is a heterogeneous subthalamic region and has extensive connections with the basal ganglia nucleus. Clinically, the ZI has been recognized as a new therapeutic target for PD. Deep brain stimulation of the ZI has been reported to relieve motor symptoms and experimental heat pain in patients with PD. The aim of the present study is to evaluate changes in iron levels in the ZI. Two neurotoxins, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), were used to prepare PD mice. By immunostaining, we first measured the success of MPTP or 6-OHDA injury. We found that the expressions of tyrosine hydroxylase were decreased after MPTP or 6-OHDA treatment. Secondly, we observed the changes of iron metabolism using Perls' iron staining and western blots. Our results showed that the numbers of iron-positive cells were significantly increased in the SN and ZI of MPTP/6-OHDA-treated mice. Moreover, the expression levels of ferritin and divalent metal transporter 1 (DMT1) in the ZI were also increased in the PD group. Glutathione peroxidase 4 (GPX4), a marker of ferroptosis, was also detected. Western blots revealed that MPTP significantly down-regulated the level of GPX4 in the ZI. As glial cells activation and neuroinflammation play important roles in the ion deposition, we finally investigated the microglial and astrocyte activation and inflammatory factors. These results suggested increased iron levels and inflammation may be present in the ZI in PD mice.
期刊介绍:
The investigation of basic mechanisms involved in the pathogenesis of neurological and psychiatric disorders has undoubtedly deepened our knowledge of these types of disorders. The impact of basic neurosciences on the understanding of the pathophysiology of the brain will further increase due to important developments such as the emergence of more specific psychoactive compounds and new technologies.
The Journal of Neural Transmission aims to establish an interface between basic sciences and clinical neurology and psychiatry. It intends to put a special emphasis on translational publications of the newest developments in the field from all disciplines of the neural sciences that relate to a better understanding and treatment of neurological and psychiatric disorders.