Banana Leaves Imagery Dataset.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Neema Mduma, Christian Elinisa
{"title":"Banana Leaves Imagery Dataset.","authors":"Neema Mduma, Christian Elinisa","doi":"10.1038/s41597-025-04456-4","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we present a dataset of banana leaf imagery, both with and without diseases. The dataset consists of 11,767 images, categorized as follows: 3,339 healthy images, 3,496 images of leaves affected by Black Sigatoka and 4,932 images of leaves affected by Fusarium Wilt Race 1. This data was collected to support machine learning diagnostics for disease detection. The data collection process involved farmers, researchers, agricultural experts and plant pathologists from the northern and southern highland regions of Tanzania. To ensure unbiased representation, farms were randomly selected from the Rungwe, Mbeya, Arumeru, and Arusha districts, based on the presence of banana crops and the targeted diseases. The dataset offers a comprehensive collection of images captured from November 2022 to January 2023, using a high-resolution smartphone camera across a wide geographical area. Researchers and developers can use this dataset to build machine learning solutions that automatically detect diseases in images, potentially enabling agricultural stakeholders, including farmers, to diagnose Fusarium Wilt Race 1 and Black Sigatoka early and take timely action.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"477"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04456-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a dataset of banana leaf imagery, both with and without diseases. The dataset consists of 11,767 images, categorized as follows: 3,339 healthy images, 3,496 images of leaves affected by Black Sigatoka and 4,932 images of leaves affected by Fusarium Wilt Race 1. This data was collected to support machine learning diagnostics for disease detection. The data collection process involved farmers, researchers, agricultural experts and plant pathologists from the northern and southern highland regions of Tanzania. To ensure unbiased representation, farms were randomly selected from the Rungwe, Mbeya, Arumeru, and Arusha districts, based on the presence of banana crops and the targeted diseases. The dataset offers a comprehensive collection of images captured from November 2022 to January 2023, using a high-resolution smartphone camera across a wide geographical area. Researchers and developers can use this dataset to build machine learning solutions that automatically detect diseases in images, potentially enabling agricultural stakeholders, including farmers, to diagnose Fusarium Wilt Race 1 and Black Sigatoka early and take timely action.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信