Chaoqun Zhu, Terrance Bishop, Zachery R Gregorich, Wei Guo
{"title":"Titin is a new factor regulating arterial stiffness through vascular smooth muscle cell tone in male rats.","authors":"Chaoqun Zhu, Terrance Bishop, Zachery R Gregorich, Wei Guo","doi":"10.14814/phy2.70270","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial stiffness is a robust predictor of cardiovascular disease and mortality. As such, there is substantial interest in uncovering its causal factors for the development of targeted treatments to regulate arterial stiffness. The elastic protein titin is a key determinant of myocardial stiffness, yet whether it plays a role in regulating arterial stiffness is unknown. In this study, we aimed to investigate the role of titin in vascular smooth muscle cell (VSMC) and overall arterial stiffness. To do this, we took advantage of rats lacking RNA binding motif 20 (RBM20), the primary splicing regulator of titin, in striated muscles. Using this model, we demonstrate that RBM20 regulates titin isoform expression in smooth muscle, with loss of the protein leading to the expression of larger titin isoforms. We show that the expression of larger titin reduces the stiffness of VSMCs. While decreased titin-based VSMC stiffness did not affect baseline arterial stiffness, we found that arterial stiffness was reduced in response to a challenge with the potent vasoconstrictor angiotensin II (Ang II). The observed reduction in arterial stiffness following Ang II treatment was not the result of changes in either the extracellular matrix or myofilaments. We further show that the expression of a larger titin isoform ameliorates cardiac remodeling caused by Ang II-associated hypertension. In summary, our study provides the first evidence that titin regulates VSMC stiffness, which is relevant for arterial stiffness in the context of elevated blood pressure. Furthermore, our data provide proof-of-concept evidence that targeting RBM20 to reduce arterial stiffness through titin isoform switching may benefit aging- or hypertension-associated arterial stiffness and vascular diseases.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 6","pages":"e70270"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arterial stiffness is a robust predictor of cardiovascular disease and mortality. As such, there is substantial interest in uncovering its causal factors for the development of targeted treatments to regulate arterial stiffness. The elastic protein titin is a key determinant of myocardial stiffness, yet whether it plays a role in regulating arterial stiffness is unknown. In this study, we aimed to investigate the role of titin in vascular smooth muscle cell (VSMC) and overall arterial stiffness. To do this, we took advantage of rats lacking RNA binding motif 20 (RBM20), the primary splicing regulator of titin, in striated muscles. Using this model, we demonstrate that RBM20 regulates titin isoform expression in smooth muscle, with loss of the protein leading to the expression of larger titin isoforms. We show that the expression of larger titin reduces the stiffness of VSMCs. While decreased titin-based VSMC stiffness did not affect baseline arterial stiffness, we found that arterial stiffness was reduced in response to a challenge with the potent vasoconstrictor angiotensin II (Ang II). The observed reduction in arterial stiffness following Ang II treatment was not the result of changes in either the extracellular matrix or myofilaments. We further show that the expression of a larger titin isoform ameliorates cardiac remodeling caused by Ang II-associated hypertension. In summary, our study provides the first evidence that titin regulates VSMC stiffness, which is relevant for arterial stiffness in the context of elevated blood pressure. Furthermore, our data provide proof-of-concept evidence that targeting RBM20 to reduce arterial stiffness through titin isoform switching may benefit aging- or hypertension-associated arterial stiffness and vascular diseases.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.