{"title":"Machine Learning-Based Glycolipid Metabolism Gene Signature Predicts Prognosis and Immune Landscape in Oesophageal Squamous Cell Carcinoma","authors":"Lin Zhu, Feng Liang, Xue Han, Bin Ye, Lei Xue","doi":"10.1111/jcmm.70434","DOIUrl":null,"url":null,"abstract":"<p>Using machine learning approaches, we developed and validated a novel prognostic model for oesophageal squamous cell carcinoma (ESCC) based on glycolipid metabolism-related genes. Through integrated analysis of TCGA and GEO datasets, we established a robust 15-gene signature that effectively stratified patients into distinct risk groups. This signature demonstrated superior prognostic value and revealed significant associations with immune infiltration patterns. High-risk patients exhibited reduced immune cell infiltration, particularly in B cells and NK cells, alongside increased tumour purity. Single-cell RNA sequencing analysis uncovered unique cellular composition patterns and enhanced interaction intensities in the high-risk group, especially within epithelial and smooth muscle cells. Functional validation confirmed MECP2 as a promising therapeutic target, with its knockdown significantly inhibiting tumour progression both in vitro and in vivo. Drug sensitivity analysis identified specific therapeutic agents showing potential efficacy for high-risk patients. Our study provides both a practical prognostic tool and novel insights into the relationship between glycolipid metabolism and tumour immunity in ESCC, offering potential strategies for personalised treatment.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70434","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Using machine learning approaches, we developed and validated a novel prognostic model for oesophageal squamous cell carcinoma (ESCC) based on glycolipid metabolism-related genes. Through integrated analysis of TCGA and GEO datasets, we established a robust 15-gene signature that effectively stratified patients into distinct risk groups. This signature demonstrated superior prognostic value and revealed significant associations with immune infiltration patterns. High-risk patients exhibited reduced immune cell infiltration, particularly in B cells and NK cells, alongside increased tumour purity. Single-cell RNA sequencing analysis uncovered unique cellular composition patterns and enhanced interaction intensities in the high-risk group, especially within epithelial and smooth muscle cells. Functional validation confirmed MECP2 as a promising therapeutic target, with its knockdown significantly inhibiting tumour progression both in vitro and in vivo. Drug sensitivity analysis identified specific therapeutic agents showing potential efficacy for high-risk patients. Our study provides both a practical prognostic tool and novel insights into the relationship between glycolipid metabolism and tumour immunity in ESCC, offering potential strategies for personalised treatment.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.