Fasciculation distribution in a healthy population assessed with diffusion tensor imaging.

IF 2.2 Q3 PHYSIOLOGY
Linda Heskamp, Lara Schlaffke, Johannes Forsting, Boudewijn T H M Sleutjes, H Stephan Goedee, Martijn Froeling
{"title":"Fasciculation distribution in a healthy population assessed with diffusion tensor imaging.","authors":"Linda Heskamp, Lara Schlaffke, Johannes Forsting, Boudewijn T H M Sleutjes, H Stephan Goedee, Martijn Froeling","doi":"10.14814/phy2.70247","DOIUrl":null,"url":null,"abstract":"<p><p>Fasciculations, a hallmark of motor neuron diseases, also occur in healthy individuals, highlighting the need to understand fasciculation intensity and distribution. Motor unit MRI (MUMRI) can assess fasciculations in large volumes but is not widely applied. We hypothesize that a more common MRI technique, diffusion tensor imaging (DTI), can also detect fasciculation when correcting for low signal-to-noise ratios and signal variability. We first systematically compared MUMRI and DTI in upper leg muscles of healthy subjects (n = 5). Secondly, we retrospectively determined fasciculation intensity and distribution in lower extremity muscles of 30 healthy subjects using DTI (n = 30). DTI and MUMRI had comparable sensitivity (75%) and precision (80%) to expert reviews. In our healthy cohort, fasciculations were more prevalent in the lower legs than upper legs (13.9 ± 11.5% vs. 9.8 ± 6.3%, p = 0.011), particularly in the soleus (9.3 ± 8.1%). This effect persisted after normalizing for muscle volume (7.2 ± 5.1%/dm<sup>3</sup> vs. 2.9 ± 1.8%/dm<sup>3</sup>, p < 0.001). Lower leg fasciculations were larger compared to upper leg fasciculations (0.81 ± 0.31 cm<sup>3</sup> vs. 0.54 ± 0.15 cm<sup>3</sup>, p < 0.001). Longitudinal analysis showed consistent fasciculation distribution over 8 months (n = 13, ICC = 0.803). In conclusion, muscle DTI detects fasciculations in all lower extremity muscles, enabling retrospective analysis of existing datasets and reducing the need for prospective MUMRI studies if muscle DTI is already acquired.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 6","pages":"e70247"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fasciculations, a hallmark of motor neuron diseases, also occur in healthy individuals, highlighting the need to understand fasciculation intensity and distribution. Motor unit MRI (MUMRI) can assess fasciculations in large volumes but is not widely applied. We hypothesize that a more common MRI technique, diffusion tensor imaging (DTI), can also detect fasciculation when correcting for low signal-to-noise ratios and signal variability. We first systematically compared MUMRI and DTI in upper leg muscles of healthy subjects (n = 5). Secondly, we retrospectively determined fasciculation intensity and distribution in lower extremity muscles of 30 healthy subjects using DTI (n = 30). DTI and MUMRI had comparable sensitivity (75%) and precision (80%) to expert reviews. In our healthy cohort, fasciculations were more prevalent in the lower legs than upper legs (13.9 ± 11.5% vs. 9.8 ± 6.3%, p = 0.011), particularly in the soleus (9.3 ± 8.1%). This effect persisted after normalizing for muscle volume (7.2 ± 5.1%/dm3 vs. 2.9 ± 1.8%/dm3, p < 0.001). Lower leg fasciculations were larger compared to upper leg fasciculations (0.81 ± 0.31 cm3 vs. 0.54 ± 0.15 cm3, p < 0.001). Longitudinal analysis showed consistent fasciculation distribution over 8 months (n = 13, ICC = 0.803). In conclusion, muscle DTI detects fasciculations in all lower extremity muscles, enabling retrospective analysis of existing datasets and reducing the need for prospective MUMRI studies if muscle DTI is already acquired.

利用弥散张量成像技术评估健康人群的筋束分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological Reports
Physiological Reports PHYSIOLOGY-
CiteScore
4.20
自引率
4.00%
发文量
374
审稿时长
9 weeks
期刊介绍: Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信