DHODH inhibition alters T cell metabolism limiting acute graft-versus-host disease while retaining graft-versus-leukemia response.

IF 3.6 3区 医学 Q2 IMMUNOLOGY
Rathan Kumar, Kara M Braunreiter, Lotus Neidemire-Colley, Natalie Sell, Yandi Gao, Camryn Steere, Margot Weber, Dhruva Vanakeri, Eunice Choi, Hannah K Choe, Sandip Vibhute, Chad Bennett, Craig A Byersdorfer, Ola A Elgamal, Thomas E Goodwin, Erin K Hertlein, John C Byrd, Parvathi Ranganathan
{"title":"DHODH inhibition alters T cell metabolism limiting acute graft-versus-host disease while retaining graft-versus-leukemia response.","authors":"Rathan Kumar, Kara M Braunreiter, Lotus Neidemire-Colley, Natalie Sell, Yandi Gao, Camryn Steere, Margot Weber, Dhruva Vanakeri, Eunice Choi, Hannah K Choe, Sandip Vibhute, Chad Bennett, Craig A Byersdorfer, Ola A Elgamal, Thomas E Goodwin, Erin K Hertlein, John C Byrd, Parvathi Ranganathan","doi":"10.1093/jimmun/vkaf023","DOIUrl":null,"url":null,"abstract":"<p><p>Acute graft-versus-host disease (GVHD) is a donor T cell driven complication and the leading cause of non-relapse mortality in patients receiving an allogeneic hematopoietic cell transplantation (allo-HCT). Allogeneic donor T cells eradicate residual leukemia and prevent relapse via the graft-versus-leukemia (GVL) effect and are critical for responding against opportunistic infections post-transplant. Current regimens successful in preventing GVHD are broadly immunosuppressive and come at the cost of increased risk of relapse and/or infection. Therefore, there is an urgent need for new approaches that limit GVHD while retaining GVL responses. During GVHD, alloreactive T cells boost their energy production through oxidative phosphorylation (OXPHOS) and glycolysis, supporting heightened proliferation and pathogenicity against healthy host tissues. The enzyme dihydroorate dehydrogenase (DHODH), is essential for de novo pyrimidine biosynthesis and for maintaining mitochondrial membrane potential during OXPHOS. Having shown upregulation of DHODH messenger RNA and protein expression in activated human T cells, we evaluated DHODH inhibition, via a small molecule inhibitor HOSU-53, as a therapeutic approach for GVHD. Inhibiting DHODH significantly reduced oxidative metabolism in T cells both during and after activation, while selectively suppressing inflammatory cytokine production in de novo activated, but not previously activated, T cells. In a xenogeneic model, HOSU-53 treatment limited GVHD severity, decreased pathogenic Th1 and Th17 response, and preserved beneficial GVL effects. Altogether, we identify DHODH inhibition as an innovative treatment strategy in allo-HCT recipients to reduce GVHD severity and retain effective GVL response.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jimmun/vkaf023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute graft-versus-host disease (GVHD) is a donor T cell driven complication and the leading cause of non-relapse mortality in patients receiving an allogeneic hematopoietic cell transplantation (allo-HCT). Allogeneic donor T cells eradicate residual leukemia and prevent relapse via the graft-versus-leukemia (GVL) effect and are critical for responding against opportunistic infections post-transplant. Current regimens successful in preventing GVHD are broadly immunosuppressive and come at the cost of increased risk of relapse and/or infection. Therefore, there is an urgent need for new approaches that limit GVHD while retaining GVL responses. During GVHD, alloreactive T cells boost their energy production through oxidative phosphorylation (OXPHOS) and glycolysis, supporting heightened proliferation and pathogenicity against healthy host tissues. The enzyme dihydroorate dehydrogenase (DHODH), is essential for de novo pyrimidine biosynthesis and for maintaining mitochondrial membrane potential during OXPHOS. Having shown upregulation of DHODH messenger RNA and protein expression in activated human T cells, we evaluated DHODH inhibition, via a small molecule inhibitor HOSU-53, as a therapeutic approach for GVHD. Inhibiting DHODH significantly reduced oxidative metabolism in T cells both during and after activation, while selectively suppressing inflammatory cytokine production in de novo activated, but not previously activated, T cells. In a xenogeneic model, HOSU-53 treatment limited GVHD severity, decreased pathogenic Th1 and Th17 response, and preserved beneficial GVL effects. Altogether, we identify DHODH inhibition as an innovative treatment strategy in allo-HCT recipients to reduce GVHD severity and retain effective GVL response.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信