Extracellular phase separation mediates storage and release of thyroglobulin in the thyroid follicular lumen.

IF 5.2 1区 生物学 Q1 BIOLOGY
Yihan Yao, Nadia Erkamp, Tomas Sneideris, Xiqiao Yang, Rob Scrutton, Matthias M Schneider, Charlotte M Fischer, Erik Schoenmakers, Nadia Schoenmakers, Tuomas P J Knowles
{"title":"Extracellular phase separation mediates storage and release of thyroglobulin in the thyroid follicular lumen.","authors":"Yihan Yao, Nadia Erkamp, Tomas Sneideris, Xiqiao Yang, Rob Scrutton, Matthias M Schneider, Charlotte M Fischer, Erik Schoenmakers, Nadia Schoenmakers, Tuomas P J Knowles","doi":"10.1038/s42003-025-07909-z","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroid hormones are produced by the thyroid gland and are essential for regulating metabolism, growth and development. Maintenance of circulating thyroid hormone levels within an appropriate range is thus a prerequisite for health. In vivo, this objective is, at least in part, facilitated through an extracellular storage depot of thyroglobulin, the glycoprotein precursor for thyroid hormones, in the thyroid follicular lumen. The molecular basis for how soluble thyroglobulin molecules form such dense depot assemblies remains elusive. Here, we describe in vitro biophysical analysis of thyroglobulin phase behaviour, suggesting that thyroglobulin is prone to undergoing ionic strength-dependent phase separation, leading to the formation of liquid-like condensates. Fluorescence photobleaching measurements further show that these condensates age as a function of time to form reversible gel-like high density storage depots of thyroglobulin. IF experiments on mouse and human thyroid follicles ex vivo reveal that spherical globules of Tg protein dense phase are present in the follicular lumen, consistent with the idea that Tg undergoes phase separation. These findings reveal a molecular mechanism for the last-come-first-served process of thyroglobulin storage and release, suggesting a role for extracellular phase separation in thyroid hormone homeostasis by providing organizational and architectural specificity without requiring membrane-mediated confinement.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"466"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07909-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thyroid hormones are produced by the thyroid gland and are essential for regulating metabolism, growth and development. Maintenance of circulating thyroid hormone levels within an appropriate range is thus a prerequisite for health. In vivo, this objective is, at least in part, facilitated through an extracellular storage depot of thyroglobulin, the glycoprotein precursor for thyroid hormones, in the thyroid follicular lumen. The molecular basis for how soluble thyroglobulin molecules form such dense depot assemblies remains elusive. Here, we describe in vitro biophysical analysis of thyroglobulin phase behaviour, suggesting that thyroglobulin is prone to undergoing ionic strength-dependent phase separation, leading to the formation of liquid-like condensates. Fluorescence photobleaching measurements further show that these condensates age as a function of time to form reversible gel-like high density storage depots of thyroglobulin. IF experiments on mouse and human thyroid follicles ex vivo reveal that spherical globules of Tg protein dense phase are present in the follicular lumen, consistent with the idea that Tg undergoes phase separation. These findings reveal a molecular mechanism for the last-come-first-served process of thyroglobulin storage and release, suggesting a role for extracellular phase separation in thyroid hormone homeostasis by providing organizational and architectural specificity without requiring membrane-mediated confinement.

细胞外相分离介导甲状腺滤泡腔内甲状腺球蛋白的储存和释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信