Doxorubicin PK/PD modeling in multiple myeloma: towards in silico trials.

IF 5.7 2区 生物学 Q1 BIOLOGY
Daniele Andrean, Francesco Da Ros, Mario Mazzucato, Morten Gram Pedersen, Roberto Visentin
{"title":"Doxorubicin PK/PD modeling in multiple myeloma: towards in silico trials.","authors":"Daniele Andrean, Francesco Da Ros, Mario Mazzucato, Morten Gram Pedersen, Roberto Visentin","doi":"10.1186/s13062-025-00626-x","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOXO) is a well-known chemotherapy drug, which is widely used in the treatment of Multiple Myeloma (MM), a treatable but not curable type of blood cancer. Here, we propose a pharmacokinetics and pharmacodynamics (PK/PD) simulation environment, aimed at facilitating the optimization of DOXO treatment regimens in MM treatment. The resulting model has a transparent mechanistic structure, which facilitates its use and interpretation. The simulator was developed using a combination of experimental and modeling techniques, starting from in vitro PK/PD experiments conducted on MM cells. In our previous work, we carefully developed a PK model for DOXO in MM cells by fitting experimental data. We now devise a PD model from in vitro data investigating the effect of different concentrations of DOXO on cell growth and death in MM cell populations. The PK model is extended to enable a clear mechanistic link between the PK and the PD models, hence providing a complete PK/PD simulator. We show how the mathematical model can be exploited to simulate different DOXO administration protocols with different dosages, repetitions and exposure times, thus, making it possible to explore the effect of a wide range of treatment protocols easily.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"33"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927236/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-025-00626-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Doxorubicin (DOXO) is a well-known chemotherapy drug, which is widely used in the treatment of Multiple Myeloma (MM), a treatable but not curable type of blood cancer. Here, we propose a pharmacokinetics and pharmacodynamics (PK/PD) simulation environment, aimed at facilitating the optimization of DOXO treatment regimens in MM treatment. The resulting model has a transparent mechanistic structure, which facilitates its use and interpretation. The simulator was developed using a combination of experimental and modeling techniques, starting from in vitro PK/PD experiments conducted on MM cells. In our previous work, we carefully developed a PK model for DOXO in MM cells by fitting experimental data. We now devise a PD model from in vitro data investigating the effect of different concentrations of DOXO on cell growth and death in MM cell populations. The PK model is extended to enable a clear mechanistic link between the PK and the PD models, hence providing a complete PK/PD simulator. We show how the mathematical model can be exploited to simulate different DOXO administration protocols with different dosages, repetitions and exposure times, thus, making it possible to explore the effect of a wide range of treatment protocols easily.

多柔比星在多发性骨髓瘤中的PK/PD建模:面向计算机试验。
多柔比星(DOXO)是一种著名的化疗药物,广泛用于治疗多发性骨髓瘤(MM),这是一种可治疗但无法治愈的血癌。在此,我们提出了一个药代动力学和药效学(PK/PD)模拟环境,旨在促进DOXO在MM治疗方案的优化。生成的模型具有透明的机制结构,便于使用和解释。该模拟器以MM细胞体外PK/PD实验为基础,采用实验与建模相结合的方法开发。在我们之前的工作中,我们通过拟合实验数据,精心建立了MM细胞DOXO的PK模型。我们现在根据体外数据设计了PD模型,研究不同浓度的DOXO对MM细胞群细胞生长和死亡的影响。对PK模型进行了扩展,使PK和PD模型之间有了明确的机制联系,从而提供了一个完整的PK/PD模拟器。我们展示了如何利用数学模型来模拟具有不同剂量,重复和暴露时间的不同DOXO给药方案,从而可以轻松探索各种治疗方案的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信