New considerations in selecting donors for dental pulp stem cells: a pilot study.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Mingchang Hu, Qianqian Zhang, Jidong Xu, Linlin Xu, Xuecheng Xu, Jiajia Wang, Yu Song
{"title":"New considerations in selecting donors for dental pulp stem cells: a pilot study.","authors":"Mingchang Hu, Qianqian Zhang, Jidong Xu, Linlin Xu, Xuecheng Xu, Jiajia Wang, Yu Song","doi":"10.1186/s12938-025-01367-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/purpose: </strong>Tissue engineering based on stem cell therapy necessitates a substantial quantity of high-quality stem cells. However, current sources face limitations, including narrow donor pools, compromised biological properties due to cryopreservation, and cellular senescence resulting from in vitro passaging and expansion. This study examines the impact of mild periodontitis on the biological performance of dental pulp stem cells (DPSCs) to explore the potential of broadening the donor pool for these cells.</p><p><strong>Materials and methods: </strong>The experiment included two variables: age and the presence of periodontitis. DPSCs were isolated from six healthy subjects and six patients with mild periodontitis. Healthy subjects were categorized into Groups A (28-32 years) and B (52-54 years), and patients with mild periodontitis were categorized into Groups C (31-33 years) and D (50-53 years). The analyses included cell morphology, proliferation rate, multilineage differentiation capacity, apoptosis, and surface marker expression.</p><p><strong>Result: </strong>No significant differences in cell morphology, pluripotency, or senescence were observed between healthy controls and periodontitis patients across age groups. Additionally, data on proliferation, pluripotency, and senescence were not significantly different. In healthy subjects, increased age was correlated with more elongated, flattened, and broader cells, alongside greater heterogeneity and intercellular granules. The proliferation and differentiation capacities decreased, whereas the degree of apoptosis increased. Similar trends were noted in patients with periodontitis.</p><p><strong>Conclusion: </strong>The biological properties of DPSCs remain unchanged in teeth with mild periodontitis, providing valuable insights for addressing the shortage of DPSCs in tissue engineering. Teeth with mild periodontitis have the potential to be pulp stem cell donors.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"37"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01367-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/purpose: Tissue engineering based on stem cell therapy necessitates a substantial quantity of high-quality stem cells. However, current sources face limitations, including narrow donor pools, compromised biological properties due to cryopreservation, and cellular senescence resulting from in vitro passaging and expansion. This study examines the impact of mild periodontitis on the biological performance of dental pulp stem cells (DPSCs) to explore the potential of broadening the donor pool for these cells.

Materials and methods: The experiment included two variables: age and the presence of periodontitis. DPSCs were isolated from six healthy subjects and six patients with mild periodontitis. Healthy subjects were categorized into Groups A (28-32 years) and B (52-54 years), and patients with mild periodontitis were categorized into Groups C (31-33 years) and D (50-53 years). The analyses included cell morphology, proliferation rate, multilineage differentiation capacity, apoptosis, and surface marker expression.

Result: No significant differences in cell morphology, pluripotency, or senescence were observed between healthy controls and periodontitis patients across age groups. Additionally, data on proliferation, pluripotency, and senescence were not significantly different. In healthy subjects, increased age was correlated with more elongated, flattened, and broader cells, alongside greater heterogeneity and intercellular granules. The proliferation and differentiation capacities decreased, whereas the degree of apoptosis increased. Similar trends were noted in patients with periodontitis.

Conclusion: The biological properties of DPSCs remain unchanged in teeth with mild periodontitis, providing valuable insights for addressing the shortage of DPSCs in tissue engineering. Teeth with mild periodontitis have the potential to be pulp stem cell donors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信