Xiaolong Tom Zhang, Jacob Blacutt, Thomas Lloyd, Mike Mencer, Vicky Pratt, Jayaprakash Kotha, Lona Sheeran, Sherilyn Adcock
{"title":"Enhancing clinical research with pharmacogenomics: a practical perspective.","authors":"Xiaolong Tom Zhang, Jacob Blacutt, Thomas Lloyd, Mike Mencer, Vicky Pratt, Jayaprakash Kotha, Lona Sheeran, Sherilyn Adcock","doi":"10.1080/17576180.2025.2481019","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacogenomics (PGx) is transforming therapeutic development by providing insights into how genetic variations influence drug response, safety, and efficacy. This review provides a structured analysis of PGx in clinical research, beginning with an overview of key genes involved in drug metabolism, transport, and targets. Following this, it examines strategies for identifying PGx-relevant genes, including phenotype-driven, hypothesis-driven, population-focused, and clinical-driven approaches. Technical platforms such as PCR, MassARRAY, and next-generation sequencing are analyzed for their suitability in PGx studies. The discussion then shifts to assay validation processes, covering both analytical and clinical validation, to ensure data reliability in clinical trials. Finally, regulatory expectations for PGx in clinical trials are discussed, focusing on key requirements across all phases of drug development. This review aims to provide a clear and practical framework for integrating PGx into clinical research to enhance drug safety, efficacy, and personalized medicine.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"399-411"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2025.2481019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmacogenomics (PGx) is transforming therapeutic development by providing insights into how genetic variations influence drug response, safety, and efficacy. This review provides a structured analysis of PGx in clinical research, beginning with an overview of key genes involved in drug metabolism, transport, and targets. Following this, it examines strategies for identifying PGx-relevant genes, including phenotype-driven, hypothesis-driven, population-focused, and clinical-driven approaches. Technical platforms such as PCR, MassARRAY, and next-generation sequencing are analyzed for their suitability in PGx studies. The discussion then shifts to assay validation processes, covering both analytical and clinical validation, to ensure data reliability in clinical trials. Finally, regulatory expectations for PGx in clinical trials are discussed, focusing on key requirements across all phases of drug development. This review aims to provide a clear and practical framework for integrating PGx into clinical research to enhance drug safety, efficacy, and personalized medicine.
BioanalysisBIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍:
Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing.
The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality.
Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing.
The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques.
Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.