A composite photonic structure with periodic array of SiO2 particles for solar cell radiative cooling

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jie Liang, Xinyu Tan, Qihao Dai, Xiongbo Yang, Zheng Guo, Weilong Sun, Wanjiang Jin, Weiwei Hu
{"title":"A composite photonic structure with periodic array of SiO2 particles for solar cell radiative cooling","authors":"Jie Liang,&nbsp;Xinyu Tan,&nbsp;Qihao Dai,&nbsp;Xiongbo Yang,&nbsp;Zheng Guo,&nbsp;Weilong Sun,&nbsp;Wanjiang Jin,&nbsp;Weiwei Hu","doi":"10.1007/s00339-025-08391-4","DOIUrl":null,"url":null,"abstract":"<div><p>Transparent radiative cooling is an effective passive cooling strategy that utilizes the vibrational contractions of molecular bonds in certain polymers to emit corresponding wavelengths of electromagnetic waves into outer space. This performance can be further improved by incorporating particles. However, balancing the negative gain in transmittance resulting from particle presence remains a challenge. Here, we designed a photonic structured radiative cooler that achieves high transparency and excellent emissivity for zero-energy thermal management of silicon solar cells by embedding periodically arranged SiO<sub>2</sub> particles within a PMMA matrix. Theoretical studies indicate that a configuration of 100 µm thick PMMA, SiO<sub>2</sub> particles with a radius of 0.5 µm, and a volume fraction of 8% achieves optimal performance. Further optimization of the embedding method revealed that an orderly arranged PMMA/SiO<sub>2</sub> radiative cooler exhibits superior emissivity (93.61%) and transmittance (93.31%) compared to a randomly arranged counterpart. Theoretical analysis indicates that this configuration can effectively reduce the temperature of silicon solar cells by 2.64 °C. Additionally, it enhances the external quantum efficiency (EQE) by 5.2%, improves the short-circuit current density by 5.3%, and mitigates efficiency losses by 1.19% compared to conventional glass-covered cells. This strategy of embedding periodic arranged SiO<sub>2</sub> particles in PMMA films is expected to significantly advance the development of transparent radiative cooling devices.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08391-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transparent radiative cooling is an effective passive cooling strategy that utilizes the vibrational contractions of molecular bonds in certain polymers to emit corresponding wavelengths of electromagnetic waves into outer space. This performance can be further improved by incorporating particles. However, balancing the negative gain in transmittance resulting from particle presence remains a challenge. Here, we designed a photonic structured radiative cooler that achieves high transparency and excellent emissivity for zero-energy thermal management of silicon solar cells by embedding periodically arranged SiO2 particles within a PMMA matrix. Theoretical studies indicate that a configuration of 100 µm thick PMMA, SiO2 particles with a radius of 0.5 µm, and a volume fraction of 8% achieves optimal performance. Further optimization of the embedding method revealed that an orderly arranged PMMA/SiO2 radiative cooler exhibits superior emissivity (93.61%) and transmittance (93.31%) compared to a randomly arranged counterpart. Theoretical analysis indicates that this configuration can effectively reduce the temperature of silicon solar cells by 2.64 °C. Additionally, it enhances the external quantum efficiency (EQE) by 5.2%, improves the short-circuit current density by 5.3%, and mitigates efficiency losses by 1.19% compared to conventional glass-covered cells. This strategy of embedding periodic arranged SiO2 particles in PMMA films is expected to significantly advance the development of transparent radiative cooling devices.

一种用于太阳电池辐射冷却的SiO2粒子周期性阵列复合光子结构
透明辐射冷却是一种有效的被动冷却策略,它利用某些聚合物中分子键的振动收缩,向外层空间发射相应波长的电磁波。通过加入微粒可以进一步提高这种性能。然而,如何平衡颗粒存在带来的负透射率增益仍然是一个挑战。在这里,我们设计了一种光子结构辐射冷却器,通过在 PMMA 基质中嵌入周期性排列的二氧化硅粒子,实现了高透明度和出色的发射率,从而实现了硅太阳能电池的零能耗热管理。理论研究表明,100 微米厚的 PMMA、半径为 0.5 微米、体积分数为 8%的 SiO2 粒子配置可实现最佳性能。进一步优化嵌入方法后发现,有序排列的 PMMA/SiO2 辐射冷却器比随机排列的冷却器具有更高的发射率(93.61%)和透射率(93.31%)。理论分析表明,这种配置可以有效地将硅太阳能电池的温度降低 2.64 °C。此外,与传统的玻璃覆盖电池相比,它还能将外部量子效率(EQE)提高 5.2%,将短路电流密度提高 5.3%,并将效率损失降低 1.19%。这种将周期性排列的二氧化硅颗粒嵌入 PMMA 薄膜的策略有望极大地推动透明辐射冷却设备的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信