{"title":"In-situ polymerization strategy for antistatic graphene oxide/polyamide (PA10T/10I) composites with high performance","authors":"Chao Yang, Hongyu Liu, Jiachun Zhong, Zejun Pu","doi":"10.1007/s10965-025-04332-0","DOIUrl":null,"url":null,"abstract":"<div><p>A sustainable copolymer derived from natural sources, poly(decamethylene terephthalamide/decamethylene isophthalamide) (PA10T/10I), was synthesized along with a series of PA10T/10I composites incorporating graphene oxide (GO) at concentrations ranging from 0.05 to 1 wt.% via an efficient in-situ polymerization method. The study investigated the impact of varying GO content on the performance of PA10T/10I/GO composites. Antistatic property tests demonstrated that even a small amount of GO significantly reduced the surface resistance of PA10T/10I, with notable improvements observed at just 1 wt.%, enhancing the antistatic properties of the PA10T/10I matrix. Additionally, Differential Scanning Calorimetry (DSC) analysis revealed that the crystallization properties of PA10T/10I were improved by the incorporation of GO, with minimal changes in the melting points of the PA10T/10I/GO composites. The melting temperatures remained in the range of 289.6 ~ 281.9 ℃as the GO content varied from 0.05 to 1 wt.%. Thermogravimetric Analysis (TGA) and Heat Deflection Temperature (HDT) results showed that the PA10T/10I/GO composites exhibited excellent thermal stability, with PA10T/10I/GO-5 (containing 1 wt.% GO) achieving a higher HDT of 105.9 ℃, surpassing that of the PA10T/10I matrix by approximately 10 ℃. Mechanical testing indicated that the tensile strength of PA10T/10I/GO-5 was approximately 28.20% higher than that of PA10T/10I, while the bending strength increased by about 23.03%. This study presents an efficient approach for fabricating polyamide composites with outstanding antistatic, crystallization, thermal resistance, and mechanical properties via in-situ polymerization, thereby facilitating the practical application of GO-based fillers.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04332-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A sustainable copolymer derived from natural sources, poly(decamethylene terephthalamide/decamethylene isophthalamide) (PA10T/10I), was synthesized along with a series of PA10T/10I composites incorporating graphene oxide (GO) at concentrations ranging from 0.05 to 1 wt.% via an efficient in-situ polymerization method. The study investigated the impact of varying GO content on the performance of PA10T/10I/GO composites. Antistatic property tests demonstrated that even a small amount of GO significantly reduced the surface resistance of PA10T/10I, with notable improvements observed at just 1 wt.%, enhancing the antistatic properties of the PA10T/10I matrix. Additionally, Differential Scanning Calorimetry (DSC) analysis revealed that the crystallization properties of PA10T/10I were improved by the incorporation of GO, with minimal changes in the melting points of the PA10T/10I/GO composites. The melting temperatures remained in the range of 289.6 ~ 281.9 ℃as the GO content varied from 0.05 to 1 wt.%. Thermogravimetric Analysis (TGA) and Heat Deflection Temperature (HDT) results showed that the PA10T/10I/GO composites exhibited excellent thermal stability, with PA10T/10I/GO-5 (containing 1 wt.% GO) achieving a higher HDT of 105.9 ℃, surpassing that of the PA10T/10I matrix by approximately 10 ℃. Mechanical testing indicated that the tensile strength of PA10T/10I/GO-5 was approximately 28.20% higher than that of PA10T/10I, while the bending strength increased by about 23.03%. This study presents an efficient approach for fabricating polyamide composites with outstanding antistatic, crystallization, thermal resistance, and mechanical properties via in-situ polymerization, thereby facilitating the practical application of GO-based fillers.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.