In silico engineering of graphitic carbon nitride nanostructures through germanium mono-doping and codoping with transition metals (Ni, Pd, Pt) as sensors for diazinon organophosphorus pesticide pollutants

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ene F. Otoh, Michael O. Odey, Osinde I. Martin, Daniel C. Agurokpon
{"title":"In silico engineering of graphitic carbon nitride nanostructures through germanium mono-doping and codoping with transition metals (Ni, Pd, Pt) as sensors for diazinon organophosphorus pesticide pollutants","authors":"Ene F. Otoh,&nbsp;Michael O. Odey,&nbsp;Osinde I. Martin,&nbsp;Daniel C. Agurokpon","doi":"10.1186/s13065-025-01436-y","DOIUrl":null,"url":null,"abstract":"<div><p>The extensive use of pesticides has raised concerns about environmental contamination, which poses potential health risks to humans and aquatic life. Hence, the need for a healthy and friendly ecosystem initiated this study, which was modeled through profound density functional theory (DFT) at the B3LYP-D3(BJ)/def2svp level of theory to gain insights into the electronic characteristics of germanium-doped graphitic carbon nitride (Ge@C<sub>3</sub>N<sub>4</sub>) engineered with nickel group transition metals (Ni, Pt, and Pd) as sensors for diazinon (DZN), an organophosphorus pesticide pollutant. To effectively sense diazinon, this research employed a variety of methodologies, beginning with the analysis of electronic properties, intermolecular investigations, adsorption studies, and sensor mechanisms. These detailed assessments revealed insightful results, as clearly indicated by their narrow energy gap and other electronic properties. Noncovalent interactions characterized by van der Waals forces were revealed predominantly by quantum atoms in molecules (QTAIM) and noncovalent interaction (NCI) analyses. Furthermore, the results of the adsorption studies, which measured the strength of the interaction between the pesticide molecules and the nanostructures, revealed favorable results characterized by negative adsorption energies of − 1.613, − 1.613, and − 1.599 eV for DZN_Ge@C<sub>3</sub>N<sub>4</sub>, DZN_Ni_Ge@C<sub>3</sub>N<sub>4</sub>, and DZN_Pd_Ge@C<sub>3</sub>N<sub>4</sub>, respectively. The simulated mechanism through which diazinon is sensed revealed favorable results, as observed by the negative Fermi energy and fraction of electron transfer (∆N), as well as a high dipole moment. This study also revealed that the codoping influenced the behavior of the systems, revealing that DZN_Ni_Ge@C<sub>3</sub>N<sub>4</sub> was the best sensing system because of its strongest adsorption (− 1.613 eV), highest dipole moment (8.348 D), most negative Fermi energy (− 1.300 eV), lowest work function (1.300 eV), and good ∆N (− 1.558) values. This study, therefore, proposes these nanostructures for further in vitro studies seeking to sense diazinon and other pesticides to maintain healthy ecosystems.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01436-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01436-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The extensive use of pesticides has raised concerns about environmental contamination, which poses potential health risks to humans and aquatic life. Hence, the need for a healthy and friendly ecosystem initiated this study, which was modeled through profound density functional theory (DFT) at the B3LYP-D3(BJ)/def2svp level of theory to gain insights into the electronic characteristics of germanium-doped graphitic carbon nitride (Ge@C3N4) engineered with nickel group transition metals (Ni, Pt, and Pd) as sensors for diazinon (DZN), an organophosphorus pesticide pollutant. To effectively sense diazinon, this research employed a variety of methodologies, beginning with the analysis of electronic properties, intermolecular investigations, adsorption studies, and sensor mechanisms. These detailed assessments revealed insightful results, as clearly indicated by their narrow energy gap and other electronic properties. Noncovalent interactions characterized by van der Waals forces were revealed predominantly by quantum atoms in molecules (QTAIM) and noncovalent interaction (NCI) analyses. Furthermore, the results of the adsorption studies, which measured the strength of the interaction between the pesticide molecules and the nanostructures, revealed favorable results characterized by negative adsorption energies of − 1.613, − 1.613, and − 1.599 eV for DZN_Ge@C3N4, DZN_Ni_Ge@C3N4, and DZN_Pd_Ge@C3N4, respectively. The simulated mechanism through which diazinon is sensed revealed favorable results, as observed by the negative Fermi energy and fraction of electron transfer (∆N), as well as a high dipole moment. This study also revealed that the codoping influenced the behavior of the systems, revealing that DZN_Ni_Ge@C3N4 was the best sensing system because of its strongest adsorption (− 1.613 eV), highest dipole moment (8.348 D), most negative Fermi energy (− 1.300 eV), lowest work function (1.300 eV), and good ∆N (− 1.558) values. This study, therefore, proposes these nanostructures for further in vitro studies seeking to sense diazinon and other pesticides to maintain healthy ecosystems.

在硅工程中,通过锗单掺杂和与过渡金属(Ni, Pd, Pt)共掺杂制备石墨化氮化碳纳米结构,作为二嗪农有机磷农药污染物的传感器
农药的广泛使用引起了人们对环境污染的担忧,这对人类和水生生物构成了潜在的健康风险。因此,对健康和友好的生态系统的需求启动了本研究,该研究通过b3lypp - d3 (BJ)/def2svp水平的深度密度泛函理论(DFT)建模,以深入了解含镍基过渡金属(Ni, Pt和Pd)作为有机磷农药污染物二嗪农(DZN)传感器的掺锗石墨氮化碳(Ge@C3N4)的电子特性。为了有效地检测二嗪农,本研究采用了多种方法,从电子性质分析、分子间研究、吸附研究和传感器机制开始。这些详细的评估揭示了深刻的结果,正如它们狭窄的能隙和其他电子特性所清楚表明的那样。分子中的量子原子(QTAIM)和非共价相互作用(NCI)主要揭示了以范德华力为特征的非共价相互作用。此外,通过测量农药分子与纳米结构之间相互作用的强度,吸附研究结果显示,DZN_Ge@C3N4、DZN_Ni_Ge@C3N4和DZN_Pd_Ge@C3N4的吸附能分别为- 1.613、- 1.613和- 1.599 eV,具有良好的吸附效果。模拟的二嗪农被感应的机制显示了良好的结果,如观察到负费米能量和电子转移分数(∆N),以及高偶极矩。研究还发现,共掺杂影响了系统的行为,发现DZN_Ni_Ge@C3N4具有最强的吸附(- 1.613 eV)、最高的偶极矩(8.348 D)、最高的负费米能(- 1.300 eV)、最低的功函数(1.300 eV)和良好的∆N(- 1.558)值,是最佳的传感系统。因此,本研究为进一步的体外研究提供了这些纳米结构,以寻求感知二嗪农和其他农药以维持健康的生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信