Meng Zhao, Huanzheng Zhu, Bing Qin, Rongxuan Zhu, Jihao Zhang, Pintu Ghosh, Zuojia Wang, Min Qiu, Qiang Li
{"title":"High-Temperature Stealth Across Multi-Infrared and Microwave Bands with Efficient Radiative Thermal Management","authors":"Meng Zhao, Huanzheng Zhu, Bing Qin, Rongxuan Zhu, Jihao Zhang, Pintu Ghosh, Zuojia Wang, Min Qiu, Qiang Li","doi":"10.1007/s40820-025-01712-5","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature stealth is vital for enhancing the concealment, survivability, and longevity of critical assets. However, achieving stealth across multiple infrared bands—particularly in the short-wave infrared (SWIR) band—along with microwave stealth and efficient thermal management at high temperatures, remains a significant challenge. Here, we propose a strategy that integrates an IR-selective emitter (Mo/Si multilayer films) and a microwave metasurface (TiB<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–TiB<sub>2</sub>) to enable multi-infrared band stealth, encompassing mid-wave infrared (MWIR), long-wave infrared (LWIR), and SWIR bands, and microwave (X-band) stealth at 700 °C, with simultaneous radiative cooling in non-atmospheric window (5–8 μm). At 700 °C, the device exhibits low emissivity of 0.38/0.44/0.60 in the MWIR/LWIR/SWIR bands, reflection loss below − 3 dB in the X-band (9.6–12 GHz), and high emissivity of 0.82 in 5–8 μm range—corresponding to a cooling power of 9.57 kW m<sup>−2</sup>. Moreover, under an input power of 17.3 kW m<sup>−2</sup>—equivalent to the aerodynamic heating at Mach 2.2—the device demonstrates a temperature reduction of 72.4 °C compared to a conventional low-emissivity molybdenum surface at high temperatures. This work provides comprehensive guidance on high-temperature stealth design, with far-reaching implications for multispectral information processing and thermal management in extreme high-temperature environments.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01712-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01712-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature stealth is vital for enhancing the concealment, survivability, and longevity of critical assets. However, achieving stealth across multiple infrared bands—particularly in the short-wave infrared (SWIR) band—along with microwave stealth and efficient thermal management at high temperatures, remains a significant challenge. Here, we propose a strategy that integrates an IR-selective emitter (Mo/Si multilayer films) and a microwave metasurface (TiB2–Al2O3–TiB2) to enable multi-infrared band stealth, encompassing mid-wave infrared (MWIR), long-wave infrared (LWIR), and SWIR bands, and microwave (X-band) stealth at 700 °C, with simultaneous radiative cooling in non-atmospheric window (5–8 μm). At 700 °C, the device exhibits low emissivity of 0.38/0.44/0.60 in the MWIR/LWIR/SWIR bands, reflection loss below − 3 dB in the X-band (9.6–12 GHz), and high emissivity of 0.82 in 5–8 μm range—corresponding to a cooling power of 9.57 kW m−2. Moreover, under an input power of 17.3 kW m−2—equivalent to the aerodynamic heating at Mach 2.2—the device demonstrates a temperature reduction of 72.4 °C compared to a conventional low-emissivity molybdenum surface at high temperatures. This work provides comprehensive guidance on high-temperature stealth design, with far-reaching implications for multispectral information processing and thermal management in extreme high-temperature environments.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.