Yu. S. Tveryanovich, E. V. Smirnov, A. S. Tveryanovich, O. V. Glumov, O. V. Tolochko, I. A. Kasatkin, V. V. Tomaev, A. A. Abramovich
{"title":"Plastic Semiconductor Solid Solutions Ag2S–Ag2Se","authors":"Yu. S. Tveryanovich, E. V. Smirnov, A. S. Tveryanovich, O. V. Glumov, O. V. Tolochko, I. A. Kasatkin, V. V. Tomaev, A. A. Abramovich","doi":"10.1134/S1087659624600522","DOIUrl":null,"url":null,"abstract":"<p>Semiconductor solid solutions in the Ag<sub>2</sub>S–Ag<sub>2</sub>Se system are studied. It is shown that monoclinic solid solutions based on Ag<sub>2</sub>S have a plasticity exceeding that of silver sulfide and selenide. The possibility of obtaining wire and foil from them by cold rolling is demonstrated. The concentration dependencies of the optical band gap and the Seebeck coefficient are studied. It is shown that intensive deformation (cold rolling) does not lead to a change in the parameters of the temperature dependencies of the electrical conductivity.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"50 5","pages":"496 - 503"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659624600522","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Semiconductor solid solutions in the Ag2S–Ag2Se system are studied. It is shown that monoclinic solid solutions based on Ag2S have a plasticity exceeding that of silver sulfide and selenide. The possibility of obtaining wire and foil from them by cold rolling is demonstrated. The concentration dependencies of the optical band gap and the Seebeck coefficient are studied. It is shown that intensive deformation (cold rolling) does not lead to a change in the parameters of the temperature dependencies of the electrical conductivity.
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.