{"title":"Thermoeconomic analysis of a geothermal power plant by comparison of different exergetic methods","authors":"Zekeriya Özcan, Özgür Ekici","doi":"10.1186/s40517-025-00335-8","DOIUrl":null,"url":null,"abstract":"<div><p>Exergoeconomics is a vital complementation of thermodynamic performance analysis. In this study, a comprehensive exergoeconomic analysis of a binary geothermal power plant in southwestern Anatolia is conducted to determine improvement potentials in the plant configuration. By utilization of cost allocation rules of three different exergoeconomic methods (Moran, Specific Exergy Costing (SPECO), Exergy Cost Theory) plant is analyzed in terms of exergetic costs and possible optimization areas. Levelized cost of electricity (LCOE) estimated by 3 different methods vary within a 3.6% range, between 7.81 c$/kWh and 8.1 c$/kWh. It has also been determined that 51.5% of LCOE is constituted by waste/residual costs. Components especially including a thermal phase change or energy conversion, whose exergoeconomic factors below 0.5 warrant investment and optimization for performance improvement despite their higher individual exergetic efficiencies reported in previous studies. This phenomenon highlights the importance of considering exergetic efficiency and exergoeconomic factors together as plant design parameters. By using advanced materials or by optimizing the temperature gradient between the geothermal brine and the working fluid, heat transfer efficiency can be enhanced in heat exchanger devices. Turbines generally have mechanical losses which can be enhanced by optimizing blade design, reducing friction, and enhancing the thermodynamic cycle (i.e., use re-heat stages or improve steam conditions).</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-025-00335-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-025-00335-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Exergoeconomics is a vital complementation of thermodynamic performance analysis. In this study, a comprehensive exergoeconomic analysis of a binary geothermal power plant in southwestern Anatolia is conducted to determine improvement potentials in the plant configuration. By utilization of cost allocation rules of three different exergoeconomic methods (Moran, Specific Exergy Costing (SPECO), Exergy Cost Theory) plant is analyzed in terms of exergetic costs and possible optimization areas. Levelized cost of electricity (LCOE) estimated by 3 different methods vary within a 3.6% range, between 7.81 c$/kWh and 8.1 c$/kWh. It has also been determined that 51.5% of LCOE is constituted by waste/residual costs. Components especially including a thermal phase change or energy conversion, whose exergoeconomic factors below 0.5 warrant investment and optimization for performance improvement despite their higher individual exergetic efficiencies reported in previous studies. This phenomenon highlights the importance of considering exergetic efficiency and exergoeconomic factors together as plant design parameters. By using advanced materials or by optimizing the temperature gradient between the geothermal brine and the working fluid, heat transfer efficiency can be enhanced in heat exchanger devices. Turbines generally have mechanical losses which can be enhanced by optimizing blade design, reducing friction, and enhancing the thermodynamic cycle (i.e., use re-heat stages or improve steam conditions).
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.