Spinning black hole scattering at \( \mathcal{O} \)(G3S2): Casimir terms, radial action and hidden symmetry

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Dogan Akpinar, Fernando Febres Cordero, Manfred Kraus, Michael S. Ruf, Mao Zeng
{"title":"Spinning black hole scattering at \\( \\mathcal{O} \\)(G3S2): Casimir terms, radial action and hidden symmetry","authors":"Dogan Akpinar,&nbsp;Fernando Febres Cordero,&nbsp;Manfred Kraus,&nbsp;Michael S. Ruf,&nbsp;Mao Zeng","doi":"10.1007/JHEP03(2025)126","DOIUrl":null,"url":null,"abstract":"<p>We resolve subtleties in calculating the post-Minksowskian dynamics of binary systems, as a spin expansion, from massive scattering amplitudes of fixed finite spin. In particular, the apparently ambiguous spin Casimir terms can be fully determined from the gradient of the spin-diagonal part of the amplitudes with respect to <i>S</i><sup>2</sup> = −<i>s</i>(<i>s</i>+1)<i>ħ</i><sup>2</sup>, using an interpolation between massive amplitudes with different spin representations. From two-loop amplitudes of spin-0 and spin-1 particles minimally coupled to gravity, we extract the spin Casimir terms in the conservative scattering angle between a spinless and a spinning black hole at <span>\\( \\mathcal{O} \\)</span>(<i>G</i><sup>3</sup><i>S</i><sup>2</sup>), finding agreement with known results in the literature. This completes an earlier study [Phys. Rev. Lett. 130 (2023), 021601] that calculated the non-Casimir terms from amplitudes. We also illustrate our methods using a model of spinning bodies in electrodynamics, finding agreement between scattering amplitude predictions and classical predictions in a <i>root-Kerr</i> electromagnetic background up to <span>\\( \\mathcal{O} \\)</span>(<i>α</i><sup>3</sup><i>S</i><sup>2</sup>). For both gravity and electrodynamics, the finite part of the amplitude coincides with the two-body radial action in the aligned spin limit, generalizing the amplitude-action relation beyond the spinless case. Surprisingly, the two-loop amplitude displays a hidden spin-shift symmetry in the probe limit, which was previously observed at one loop. We conjecture that the symmetry holds to all orders in the coupling constant and is a consequence of integrability of Kerr orbits in the probe limit at the first few orders in spin.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)126.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)126","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We resolve subtleties in calculating the post-Minksowskian dynamics of binary systems, as a spin expansion, from massive scattering amplitudes of fixed finite spin. In particular, the apparently ambiguous spin Casimir terms can be fully determined from the gradient of the spin-diagonal part of the amplitudes with respect to S2 = −s(s+1)ħ2, using an interpolation between massive amplitudes with different spin representations. From two-loop amplitudes of spin-0 and spin-1 particles minimally coupled to gravity, we extract the spin Casimir terms in the conservative scattering angle between a spinless and a spinning black hole at \( \mathcal{O} \)(G3S2), finding agreement with known results in the literature. This completes an earlier study [Phys. Rev. Lett. 130 (2023), 021601] that calculated the non-Casimir terms from amplitudes. We also illustrate our methods using a model of spinning bodies in electrodynamics, finding agreement between scattering amplitude predictions and classical predictions in a root-Kerr electromagnetic background up to \( \mathcal{O} \)(α3S2). For both gravity and electrodynamics, the finite part of the amplitude coincides with the two-body radial action in the aligned spin limit, generalizing the amplitude-action relation beyond the spinless case. Surprisingly, the two-loop amplitude displays a hidden spin-shift symmetry in the probe limit, which was previously observed at one loop. We conjecture that the symmetry holds to all orders in the coupling constant and is a consequence of integrability of Kerr orbits in the probe limit at the first few orders in spin.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信