Sustainable synthesis of 2,3-Dihydroquinazolin-4(1H)-ones using Ni-Fe2O3@SiO2-Pr-DMAP novel nanocatalyst: a profiling approach by DFT

IF 2.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Lalit Dhananjay Bhosale, Akshay Pandurang Gurav, Pradeep Jangonda Patil, Dilip Hanumant Dagade, Sandeep Ashok Sankpal, Shankar Poshatti Hangirgekar
{"title":"Sustainable synthesis of 2,3-Dihydroquinazolin-4(1H)-ones using Ni-Fe2O3@SiO2-Pr-DMAP novel nanocatalyst: a profiling approach by DFT","authors":"Lalit Dhananjay Bhosale,&nbsp;Akshay Pandurang Gurav,&nbsp;Pradeep Jangonda Patil,&nbsp;Dilip Hanumant Dagade,&nbsp;Sandeep Ashok Sankpal,&nbsp;Shankar Poshatti Hangirgekar","doi":"10.1007/s11164-025-05544-1","DOIUrl":null,"url":null,"abstract":"<div><p>Synthesis and characterization of ionic liquid anchored magnetically separable novel heterogeneous Nanocatalyst Ni-Fe₂O₃@SiO₂-Pr-DMAP and its use in the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivative. The nanocatalyst was thoroughly characterised by XRD, SEM, TEM, EDX, FTIR, and VSM, confirming its nanoscale morphology, magnetic properties, and chemical composition. This polycrystalline nanocatalyst demonstrated excellent catalytic activity under mild conditions, achieving high yields of various substituted derivatives (4a, 4e, and 4 g) through a three-component condensation reaction. 1H-NMR, 13C-NMR, and Mass spectroscopy confirmed the formation of catalytic products, and the proposed mechanism was investigated. A comparative analysis with existing catalysts revealed the superior efficiency, shorter reaction times, magnetically separable, excellent reusability, and reduced environmental impact of Ni-Fe₂O₃@SiO₂-Pr-DMAP due to modification in catalyst and the elimination of harmful solvents. Additionally, the catalyst was proven recyclable, making it a cost-effective and environmentally friendly option. This study introduces a facile, eco-friendly process for synthesizing 2,3-dihydroquinazolin-4(1<i>H</i>)-one derivatives, contributing to advancing green chemistry, non-chromatographic purification method, and sustainable catalytic processes.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"51 4","pages":"1827 - 1861"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-025-05544-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthesis and characterization of ionic liquid anchored magnetically separable novel heterogeneous Nanocatalyst Ni-Fe₂O₃@SiO₂-Pr-DMAP and its use in the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivative. The nanocatalyst was thoroughly characterised by XRD, SEM, TEM, EDX, FTIR, and VSM, confirming its nanoscale morphology, magnetic properties, and chemical composition. This polycrystalline nanocatalyst demonstrated excellent catalytic activity under mild conditions, achieving high yields of various substituted derivatives (4a, 4e, and 4 g) through a three-component condensation reaction. 1H-NMR, 13C-NMR, and Mass spectroscopy confirmed the formation of catalytic products, and the proposed mechanism was investigated. A comparative analysis with existing catalysts revealed the superior efficiency, shorter reaction times, magnetically separable, excellent reusability, and reduced environmental impact of Ni-Fe₂O₃@SiO₂-Pr-DMAP due to modification in catalyst and the elimination of harmful solvents. Additionally, the catalyst was proven recyclable, making it a cost-effective and environmentally friendly option. This study introduces a facile, eco-friendly process for synthesizing 2,3-dihydroquinazolin-4(1H)-one derivatives, contributing to advancing green chemistry, non-chromatographic purification method, and sustainable catalytic processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
18.20%
发文量
229
审稿时长
2.6 months
期刊介绍: Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry. The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信