{"title":"Sustainable synthesis of 2,3-Dihydroquinazolin-4(1H)-ones using Ni-Fe2O3@SiO2-Pr-DMAP novel nanocatalyst: a profiling approach by DFT","authors":"Lalit Dhananjay Bhosale, Akshay Pandurang Gurav, Pradeep Jangonda Patil, Dilip Hanumant Dagade, Sandeep Ashok Sankpal, Shankar Poshatti Hangirgekar","doi":"10.1007/s11164-025-05544-1","DOIUrl":null,"url":null,"abstract":"<div><p>Synthesis and characterization of ionic liquid anchored magnetically separable novel heterogeneous Nanocatalyst Ni-Fe₂O₃@SiO₂-Pr-DMAP and its use in the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivative. The nanocatalyst was thoroughly characterised by XRD, SEM, TEM, EDX, FTIR, and VSM, confirming its nanoscale morphology, magnetic properties, and chemical composition. This polycrystalline nanocatalyst demonstrated excellent catalytic activity under mild conditions, achieving high yields of various substituted derivatives (4a, 4e, and 4 g) through a three-component condensation reaction. 1H-NMR, 13C-NMR, and Mass spectroscopy confirmed the formation of catalytic products, and the proposed mechanism was investigated. A comparative analysis with existing catalysts revealed the superior efficiency, shorter reaction times, magnetically separable, excellent reusability, and reduced environmental impact of Ni-Fe₂O₃@SiO₂-Pr-DMAP due to modification in catalyst and the elimination of harmful solvents. Additionally, the catalyst was proven recyclable, making it a cost-effective and environmentally friendly option. This study introduces a facile, eco-friendly process for synthesizing 2,3-dihydroquinazolin-4(1<i>H</i>)-one derivatives, contributing to advancing green chemistry, non-chromatographic purification method, and sustainable catalytic processes.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"51 4","pages":"1827 - 1861"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-025-05544-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesis and characterization of ionic liquid anchored magnetically separable novel heterogeneous Nanocatalyst Ni-Fe₂O₃@SiO₂-Pr-DMAP and its use in the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivative. The nanocatalyst was thoroughly characterised by XRD, SEM, TEM, EDX, FTIR, and VSM, confirming its nanoscale morphology, magnetic properties, and chemical composition. This polycrystalline nanocatalyst demonstrated excellent catalytic activity under mild conditions, achieving high yields of various substituted derivatives (4a, 4e, and 4 g) through a three-component condensation reaction. 1H-NMR, 13C-NMR, and Mass spectroscopy confirmed the formation of catalytic products, and the proposed mechanism was investigated. A comparative analysis with existing catalysts revealed the superior efficiency, shorter reaction times, magnetically separable, excellent reusability, and reduced environmental impact of Ni-Fe₂O₃@SiO₂-Pr-DMAP due to modification in catalyst and the elimination of harmful solvents. Additionally, the catalyst was proven recyclable, making it a cost-effective and environmentally friendly option. This study introduces a facile, eco-friendly process for synthesizing 2,3-dihydroquinazolin-4(1H)-one derivatives, contributing to advancing green chemistry, non-chromatographic purification method, and sustainable catalytic processes.
期刊介绍:
Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry.
The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.