{"title":"Quantum Ruzsa Divergence to Quantify Magic","authors":"Kaifeng Bu;Weichen Gu;Arthur Jaffe","doi":"10.1109/TIT.2025.3543276","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the behavior of quantum entropy under quantum convolution and its application in quantifying magic. We first establish an entropic, quantum central limit theorem (q-CLT), where the rate of convergence is bounded by the magic gap. We also introduce a new quantum divergence based on quantum convolution, called the quantum Ruzsa divergence, to study the stabilizer structure of quantum states. We conjecture a “convolutional strong subadditivity” inequality, which leads to the triangle inequality for the quantum Ruzsa divergence. In addition, we propose two new magic measures, the quantum Ruzsa divergence of magic and quantum-doubling constant, to quantify the amount of magic in quantum states. Finally, by using the quantum convolution, we extend the classical, inverse sumset theory to the quantum case. These results shed new insight into the study of the stabilizer and magic states in quantum information theory.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 4","pages":"2726-2740"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891845/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigate the behavior of quantum entropy under quantum convolution and its application in quantifying magic. We first establish an entropic, quantum central limit theorem (q-CLT), where the rate of convergence is bounded by the magic gap. We also introduce a new quantum divergence based on quantum convolution, called the quantum Ruzsa divergence, to study the stabilizer structure of quantum states. We conjecture a “convolutional strong subadditivity” inequality, which leads to the triangle inequality for the quantum Ruzsa divergence. In addition, we propose two new magic measures, the quantum Ruzsa divergence of magic and quantum-doubling constant, to quantify the amount of magic in quantum states. Finally, by using the quantum convolution, we extend the classical, inverse sumset theory to the quantum case. These results shed new insight into the study of the stabilizer and magic states in quantum information theory.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.