Bhargav R. Manjunatha , Kailey Sun Marcus , Rosa M. Gomila , Antonio Frontera , Alex J. Plajer
{"title":"Harnessing borane-potassium cooperativity for sulfurated ring-opening copolymerisation†","authors":"Bhargav R. Manjunatha , Kailey Sun Marcus , Rosa M. Gomila , Antonio Frontera , Alex J. Plajer","doi":"10.1039/d4gc05665e","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfur-containing polymers, such as thioesters and thiocarbonates, can exhibit improved thermal properties and degradability compared to their all-oxygen analogues, yet their synthesis remains challenging. In this respect, ring-opening copolymerization (ROCOP) offers access to sulfur-containing polymers; however, the catalysts used for this process often rely on toxic, expensive or synthetically complex components. Here, we demonstrate that combining commercial borane Lewis acids with easily accessible potassium acetate crown ether complexes highly selectively mediates the ring-opening copolymerization of oxetanes with a wide range of sulfur-containing monomers. Mechanistic investigations clearly indicate a cooperative mode of action between boron and potassium, yielding high-melting, semicrystalline materials that exhibit improved thermal stability compared to those generated <em>via</em> chromium catalysis. Our study establishes new concepts in cooperative catalysis to produce sustainable materials that are otherwise difficult to access.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 13","pages":"Pages 3494-3502"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc05665e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225001578","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur-containing polymers, such as thioesters and thiocarbonates, can exhibit improved thermal properties and degradability compared to their all-oxygen analogues, yet their synthesis remains challenging. In this respect, ring-opening copolymerization (ROCOP) offers access to sulfur-containing polymers; however, the catalysts used for this process often rely on toxic, expensive or synthetically complex components. Here, we demonstrate that combining commercial borane Lewis acids with easily accessible potassium acetate crown ether complexes highly selectively mediates the ring-opening copolymerization of oxetanes with a wide range of sulfur-containing monomers. Mechanistic investigations clearly indicate a cooperative mode of action between boron and potassium, yielding high-melting, semicrystalline materials that exhibit improved thermal stability compared to those generated via chromium catalysis. Our study establishes new concepts in cooperative catalysis to produce sustainable materials that are otherwise difficult to access.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.