Fundamental Limits of Covert Communication Over Classical-Quantum Channels

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Michael S. Bullock;Azadeh Sheikholeslami;Mehrdad Tahmasbi;Robert C. Macdonald;Saikat Guha;Boulat A. Bash
{"title":"Fundamental Limits of Covert Communication Over Classical-Quantum Channels","authors":"Michael S. Bullock;Azadeh Sheikholeslami;Mehrdad Tahmasbi;Robert C. Macdonald;Saikat Guha;Boulat A. Bash","doi":"10.1109/TIT.2025.3537970","DOIUrl":null,"url":null,"abstract":"We investigate covert communication over general memoryless classical-quantum channels with fixed finite-size input alphabets. We show that the square root law (SRL) governs covert communication in this setting when product a of <italic>n</i> input states is used: <inline-formula> <tex-math>$L_{\\mathrm { SRL}}\\sqrt {n}+o(\\sqrt {n})$ </tex-math></inline-formula> covert bits (but no more) can be reliably transmitted in <italic>n</i> uses of classical-quantum channel, where <inline-formula> <tex-math>$L_{\\mathrm { SRL}}\\gt 0$ </tex-math></inline-formula> is a channel-dependent constant that we call <italic>covert capacity</i>. We also show that ensuring covertness requires <inline-formula> <tex-math>$J_{\\mathrm { SRL}}\\sqrt {n}+o(\\sqrt {n})$ </tex-math></inline-formula> bits secret key shared by the communicating parties prior to transmission, where <inline-formula> <tex-math>$J_{\\mathrm { SRL}}\\geq 0$ </tex-math></inline-formula> is a channel-dependent constant. We assume a quantum-powerful adversary that can perform an arbitrary joint (entangling) measurement on all <italic>n</i> channel uses. We determine the single-letter expressions for <inline-formula> <tex-math>$L_{\\mathrm { SRL}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$J_{\\mathrm { SRL}}$ </tex-math></inline-formula>, and establish conditions when <inline-formula> <tex-math>$J_{\\mathrm { SRL}}=0$ </tex-math></inline-formula> (i.e., no pre-shared secret key is needed). Finally, we evaluate scenarios where covert communication is not governed by the SRL.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 4","pages":"2741-2762"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10886999/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate covert communication over general memoryless classical-quantum channels with fixed finite-size input alphabets. We show that the square root law (SRL) governs covert communication in this setting when product a of n input states is used: $L_{\mathrm { SRL}}\sqrt {n}+o(\sqrt {n})$ covert bits (but no more) can be reliably transmitted in n uses of classical-quantum channel, where $L_{\mathrm { SRL}}\gt 0$ is a channel-dependent constant that we call covert capacity. We also show that ensuring covertness requires $J_{\mathrm { SRL}}\sqrt {n}+o(\sqrt {n})$ bits secret key shared by the communicating parties prior to transmission, where $J_{\mathrm { SRL}}\geq 0$ is a channel-dependent constant. We assume a quantum-powerful adversary that can perform an arbitrary joint (entangling) measurement on all n channel uses. We determine the single-letter expressions for $L_{\mathrm { SRL}}$ and $J_{\mathrm { SRL}}$ , and establish conditions when $J_{\mathrm { SRL}}=0$ (i.e., no pre-shared secret key is needed). Finally, we evaluate scenarios where covert communication is not governed by the SRL.
我们研究了具有固定有限大小输入字母表的一般无记忆经典量子信道上的隐蔽通信。我们证明,当使用 n 个输入状态的乘积 a 时,平方根定律(SRL)在这种情况下支配着隐蔽通信: 其中 $L_{\mathrm { SRL}}\sqrt {n}+o(\sqrt {n})$ 是一个与信道相关的常数,我们称之为隐蔽容量。我们还证明,确保隐蔽性需要通信双方在传输前共享 $J_{\mathrm { SRL}}\sqrt {n}+o(\sqrt {n})$比特秘钥,其中 $J_{\mathrm { SRL}}\geq 0$ 是一个与信道相关的常数。我们假设有一个强大的量子对手,可以对所有 n 个信道使用进行任意联合(纠缠)测量。我们确定了 $L_{\mathrm { SRL}}$ 和 $J_{\mathrm { SRL}}$ 的单字母表达式,并建立了 $J_{\mathrm { SRL}}=0$ 时的条件(即不需要预共享密钥)。最后,我们评估了不受 SRL 约束的隐蔽通信场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信