Yiying Liu;Minghui Yin;Huanhuan Zhou;Yunxia You;Weihua Zhang;Hongwei Liu;Chen Wang;Yajie Zou;Zhiqiang Li
{"title":"Virtual_N2_PDK: A Predictive Process Design Kit for 2-nm Nanosheet FET Technology","authors":"Yiying Liu;Minghui Yin;Huanhuan Zhou;Yunxia You;Weihua Zhang;Hongwei Liu;Chen Wang;Yajie Zou;Zhiqiang Li","doi":"10.1109/TVLSI.2025.3529504","DOIUrl":null,"url":null,"abstract":"Nanosheet FETs (NSFETs) are considered promising candidates to replace FinFETs as the dominant devices in sub-5-nm processes. To encourage further research into NSFET-based integrated circuits, we present Virtual_N2_PDK, a predictive process design kit (PDK) for 2-nm NSFET technology. All assumptions are based on publicly available sources. Ruthenium (Ru) interconnects are employed for the buried power rail (BPR) and tight-pitch layers. Wrap-around contact (WAC) is also integrated into Virtual_N2_PDK to investigate its impact on circuit performance. By calibrating the BSIM-CMG model with 3-D technology computer-aided design (TCAD) electrothermal simulation results, SPICE models that account for self-heating effects (SHEs) are generated for devices with and without WAC. The simulation results show that with the WAC structure, the energy-delay product (EDP) of standard cells is reduced by an average of 25.18%, while the frequency of a 15-stage ring oscillator circuit increases by 26.05%.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 4","pages":"1004-1013"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856560/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Nanosheet FETs (NSFETs) are considered promising candidates to replace FinFETs as the dominant devices in sub-5-nm processes. To encourage further research into NSFET-based integrated circuits, we present Virtual_N2_PDK, a predictive process design kit (PDK) for 2-nm NSFET technology. All assumptions are based on publicly available sources. Ruthenium (Ru) interconnects are employed for the buried power rail (BPR) and tight-pitch layers. Wrap-around contact (WAC) is also integrated into Virtual_N2_PDK to investigate its impact on circuit performance. By calibrating the BSIM-CMG model with 3-D technology computer-aided design (TCAD) electrothermal simulation results, SPICE models that account for self-heating effects (SHEs) are generated for devices with and without WAC. The simulation results show that with the WAC structure, the energy-delay product (EDP) of standard cells is reduced by an average of 25.18%, while the frequency of a 15-stage ring oscillator circuit increases by 26.05%.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.