Quantum Secure Non-Malleable Randomness Encoder and Its Applications

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rishabh Batra;Naresh Goud Boddu;Rahul Jain
{"title":"Quantum Secure Non-Malleable Randomness Encoder and Its Applications","authors":"Rishabh Batra;Naresh Goud Boddu;Rahul Jain","doi":"10.1109/TIT.2025.3545283","DOIUrl":null,"url":null,"abstract":"“Non-Malleable Randomness Encoder” (NMRE) was introduced by Kanukurthi et al. (2018) as a useful cryptographic primitive helpful in the construction of non-malleable codes. To the best of our knowledge, their construction is not known to be quantum secure. We provide a construction of a first rate-<inline-formula> <tex-math>$1/2$ </tex-math></inline-formula>, 2-split, quantum secure NMRE and use this in a black-box manner, to construct the following: 1) rate <inline-formula> <tex-math>$1/11$ </tex-math></inline-formula>, 3-split, quantum non-malleable code; 2) rate <inline-formula> <tex-math>$1/3$ </tex-math></inline-formula>, 3-split, quantum secure non-malleable code; and 3) rate <inline-formula> <tex-math>$1/5$ </tex-math></inline-formula>, 2-split, average case quantum secure non-malleable code.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 4","pages":"2698-2725"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10902636/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

“Non-Malleable Randomness Encoder” (NMRE) was introduced by Kanukurthi et al. (2018) as a useful cryptographic primitive helpful in the construction of non-malleable codes. To the best of our knowledge, their construction is not known to be quantum secure. We provide a construction of a first rate- $1/2$ , 2-split, quantum secure NMRE and use this in a black-box manner, to construct the following: 1) rate $1/11$ , 3-split, quantum non-malleable code; 2) rate $1/3$ , 3-split, quantum secure non-malleable code; and 3) rate $1/5$ , 2-split, average case quantum secure non-malleable code.
量子安全非延展性随机编码器及其应用
“不可延展性随机编码器”(NMRE)是由Kanukurthi等人(2018)引入的,作为一种有用的密码原语,有助于构建不可延展性代码。据我们所知,它们的构造并不是量子安全的。我们提供了一个第一速率- $1/2$,2-分裂,量子安全NMRE的结构,并以黑盒方式使用它来构造以下代码:1)速率$1/11$,3-分裂,量子不可延展代码;2) rate $1/3$, 3-split,量子安全不可延展性代码;3) rate $1/5$, 2-split,平均情况下量子安全不可延展性代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信