Mathematics Matters or Maybe Not: An Astonishing Independence between Mathematics and the Rate of Learning in General Chemistry

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kenneth R. Koedinger, Mark Blaser, Elizabeth A. McLaughlin, Hui Cheng and David J. Yaron*, 
{"title":"Mathematics Matters or Maybe Not: An Astonishing Independence between Mathematics and the Rate of Learning in General Chemistry","authors":"Kenneth R. Koedinger,&nbsp;Mark Blaser,&nbsp;Elizabeth A. McLaughlin,&nbsp;Hui Cheng and David J. Yaron*,&nbsp;","doi":"10.1021/jacsau.4c0112610.1021/jacsau.4c01126","DOIUrl":null,"url":null,"abstract":"<p >Research spanning nearly a century has found that mathematics plays an important role in the learning of chemistry. Here, we use a large dataset of student interactions with online courseware to investigate the details of this link between mathematics and chemistry. The activities in the courseware are labeled against a list of knowledge components (KCs) covered by the content, and student interactions are tracked over a full semester of general chemistry at a range of institutions. Logistic regression is used to model student performance as a function of the number of opportunities a student has taken to engage with a particular KC. This regression analysis generates estimates of both the initial knowledge and the learning rate for each student and each KC. Consistent with results from other domains, the initial knowledge varies substantially across students, but the learning rate is nearly the same for all students. The role of mathematics is investigated by labeling each KC with the level of math involved. The overwhelming result from regressions based on these labels is that only the initial knowledge varies strongly across students and across the level of math involved in a particular topic. The student learning rate is nearly independent of both the level of math involved in a KC and the prior mathematical preparation of an individual student. The observation that the primary challenge for students lies in initial knowledge, rather than learning rate, may have implications for course and curriculum design.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 3","pages":"1268–1278 1268–1278"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Research spanning nearly a century has found that mathematics plays an important role in the learning of chemistry. Here, we use a large dataset of student interactions with online courseware to investigate the details of this link between mathematics and chemistry. The activities in the courseware are labeled against a list of knowledge components (KCs) covered by the content, and student interactions are tracked over a full semester of general chemistry at a range of institutions. Logistic regression is used to model student performance as a function of the number of opportunities a student has taken to engage with a particular KC. This regression analysis generates estimates of both the initial knowledge and the learning rate for each student and each KC. Consistent with results from other domains, the initial knowledge varies substantially across students, but the learning rate is nearly the same for all students. The role of mathematics is investigated by labeling each KC with the level of math involved. The overwhelming result from regressions based on these labels is that only the initial knowledge varies strongly across students and across the level of math involved in a particular topic. The student learning rate is nearly independent of both the level of math involved in a KC and the prior mathematical preparation of an individual student. The observation that the primary challenge for students lies in initial knowledge, rather than learning rate, may have implications for course and curriculum design.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信