Synthetic Cation Transporters Eradicate Drug-Resistant Staphylococcus aureus, Persisters, and Biofilms

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pak-Ming Fong, Victor Yat-Man Tang, Lu Xu, Bill Hin-Cheung Yam, Halebeedu Prakash Pradeep, Yuhui Feng, Liang Tao, Richard Yi-Tsun Kao* and Dan Yang*, 
{"title":"Synthetic Cation Transporters Eradicate Drug-Resistant Staphylococcus aureus, Persisters, and Biofilms","authors":"Pak-Ming Fong,&nbsp;Victor Yat-Man Tang,&nbsp;Lu Xu,&nbsp;Bill Hin-Cheung Yam,&nbsp;Halebeedu Prakash Pradeep,&nbsp;Yuhui Feng,&nbsp;Liang Tao,&nbsp;Richard Yi-Tsun Kao* and Dan Yang*,&nbsp;","doi":"10.1021/jacsau.4c0119810.1021/jacsau.4c01198","DOIUrl":null,"url":null,"abstract":"<p >New drugs are urgently required to address the ongoing health crisis caused by methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infections. Added to the challenge is the difficult-to-treat persister cells and biofilm which are tolerant to the antibiotics. Here we report a new approach to these problems, describing the design and synthesis of aminoxy-acid–based dipeptides that facilitate cation transport across cell membranes to disrupt bacterial ion homeostasis. Remarkably, these synthetic cation transporters display significant antibacterial activity against MRSA, while maintaining high selectivity over mammalian cells. They also effectively eliminate bacterial persisters and reduce established biofilms. Additionally, they inhibit biofilm formation and suppress bacterial virulent protein secretion, even at subinhibitory concentrations. Their associated antibiotic effects support their in vivo efficacy in murine skin and bloodstream MRSA infection models with no observable toxicity to the host. Mode-of-action analysis indicates that these cation transporters induce cytoplasmic acidification, hyperpolarization, and calcium influx, accelerating autolysis. Given their potent activity against bacterial persisters and biofilms, synthetic cation transporters are an emergent and promising class of compounds in the fight against MRSA infections.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 3","pages":"1328–1339 1328–1339"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01198","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

New drugs are urgently required to address the ongoing health crisis caused by methicillin-resistant Staphylococcus aureus (MRSA) infections. Added to the challenge is the difficult-to-treat persister cells and biofilm which are tolerant to the antibiotics. Here we report a new approach to these problems, describing the design and synthesis of aminoxy-acid–based dipeptides that facilitate cation transport across cell membranes to disrupt bacterial ion homeostasis. Remarkably, these synthetic cation transporters display significant antibacterial activity against MRSA, while maintaining high selectivity over mammalian cells. They also effectively eliminate bacterial persisters and reduce established biofilms. Additionally, they inhibit biofilm formation and suppress bacterial virulent protein secretion, even at subinhibitory concentrations. Their associated antibiotic effects support their in vivo efficacy in murine skin and bloodstream MRSA infection models with no observable toxicity to the host. Mode-of-action analysis indicates that these cation transporters induce cytoplasmic acidification, hyperpolarization, and calcium influx, accelerating autolysis. Given their potent activity against bacterial persisters and biofilms, synthetic cation transporters are an emergent and promising class of compounds in the fight against MRSA infections.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信