Tailoring the Selective Oxidation of Hydroxyl-Containing Compounds via Precisely Tuning the Hydrogen-Bond Strength of Catalyst H-Bond Acceptors

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiao Feng, Piaoping Yang, Yinwei Wang, Jieqi Cao, Jin Gao*, Song Shi* and Dionisios G. Vlachos*, 
{"title":"Tailoring the Selective Oxidation of Hydroxyl-Containing Compounds via Precisely Tuning the Hydrogen-Bond Strength of Catalyst H-Bond Acceptors","authors":"Xiao Feng,&nbsp;Piaoping Yang,&nbsp;Yinwei Wang,&nbsp;Jieqi Cao,&nbsp;Jin Gao*,&nbsp;Song Shi* and Dionisios G. Vlachos*,&nbsp;","doi":"10.1021/jacsau.4c0126210.1021/jacsau.4c01262","DOIUrl":null,"url":null,"abstract":"<p >The unique performance of the enzyme is mainly achieved via weak interactions between the “outer coordination sphere” and the substrate. Inspired by this process, we developed 3D encapsulated-structure catalysts with hydrogen-bond engineering on the shell, which mimics the “outer coordination sphere” of an enzyme. Various hydrogen bond acceptors (C═O, S═O, and N–O groups) are imparted in the shell. Concentration-dependent <sup>1</sup>H NMR, inverse-phase gas Chromatography (IGC) measurements, and DFT calculations underscore that the hydrogen bond strength between the acceptor groups and alcohol follows the order of C═O &lt; S═O &lt; N–O. The hydroxyl compound oxidation rate vs the hydrogen bond strength follows a volcano behavior, reminiscent of Sabatier’s principle. The performance variation among catalysts is attributed to the adsorption strength of the substrate. The proposed bioinspired design principle expands the scope of encapsulated catalysts, enabling fine regulation of catalytic activity through precise microenvironment control via weak interactions with substrates.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 3","pages":"1359–1366 1359–1366"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01262","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The unique performance of the enzyme is mainly achieved via weak interactions between the “outer coordination sphere” and the substrate. Inspired by this process, we developed 3D encapsulated-structure catalysts with hydrogen-bond engineering on the shell, which mimics the “outer coordination sphere” of an enzyme. Various hydrogen bond acceptors (C═O, S═O, and N–O groups) are imparted in the shell. Concentration-dependent 1H NMR, inverse-phase gas Chromatography (IGC) measurements, and DFT calculations underscore that the hydrogen bond strength between the acceptor groups and alcohol follows the order of C═O < S═O < N–O. The hydroxyl compound oxidation rate vs the hydrogen bond strength follows a volcano behavior, reminiscent of Sabatier’s principle. The performance variation among catalysts is attributed to the adsorption strength of the substrate. The proposed bioinspired design principle expands the scope of encapsulated catalysts, enabling fine regulation of catalytic activity through precise microenvironment control via weak interactions with substrates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信