Nanoneedle array structure optimization-induced mass transfer in all-vanadium flow batteries

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Yuan Liu , Haoming Meng , Kai Wan , Sen Yao , Yuxiang Miao , Jinghua Li , Jiaxi Xia , Hai Li , Mingfeng Du , Tao Xie , Chong Li , Jianjun Hu
{"title":"Nanoneedle array structure optimization-induced mass transfer in all-vanadium flow batteries","authors":"Yuan Liu ,&nbsp;Haoming Meng ,&nbsp;Kai Wan ,&nbsp;Sen Yao ,&nbsp;Yuxiang Miao ,&nbsp;Jinghua Li ,&nbsp;Jiaxi Xia ,&nbsp;Hai Li ,&nbsp;Mingfeng Du ,&nbsp;Tao Xie ,&nbsp;Chong Li ,&nbsp;Jianjun Hu","doi":"10.1016/j.electacta.2025.146089","DOIUrl":null,"url":null,"abstract":"<div><div>This paper employs a robust acid pretreatment to activate the graphite felt electrode, subsequently facilitating the generation of nickel cobalt oxide (NiCoO<sub>2</sub>) nano-needle arrays on the surface of the graphite felt electrode through a hydrothermal method. Additionally, the paper demonstrates the successful doping of the NiCoO<sub>2</sub> structure with nitrogen through the utilization of an ammonia annealing process. The experimental results reveal that this modification initiative enlarges the BET specific surface area of the electrode by a factor of sixteen. Furthermore, the needle array structure not only increases the delivery of active substances but also greatly facilitates the electrochemical reaction. The electrochemical performance of the modified graphite felts was markedly enhanced in comparison to that of the pristine graphite felts, due to the combined effect of the Ni-Co oxides' efficient electrocatalytic ability and the improvement of the mass transfer ability of the electrode resulting from the alteration of the electrode surface structure. The doping of the metal oxides with nitrogen can further increase their conductivity, thereby enhancing their catalytic performance for redox reactions. The Multiphysics simulation results on the electrode surface demonstrate that the upright channels between the needle arrays facilitate the full and rapid reaction of vanadium ions on the electrode surface, enabling the products to be detached from the electrode in a timely manner, which in turn reduces the concentration polarization on the electrode surface.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"525 ","pages":"Article 146089"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625004517","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper employs a robust acid pretreatment to activate the graphite felt electrode, subsequently facilitating the generation of nickel cobalt oxide (NiCoO2) nano-needle arrays on the surface of the graphite felt electrode through a hydrothermal method. Additionally, the paper demonstrates the successful doping of the NiCoO2 structure with nitrogen through the utilization of an ammonia annealing process. The experimental results reveal that this modification initiative enlarges the BET specific surface area of the electrode by a factor of sixteen. Furthermore, the needle array structure not only increases the delivery of active substances but also greatly facilitates the electrochemical reaction. The electrochemical performance of the modified graphite felts was markedly enhanced in comparison to that of the pristine graphite felts, due to the combined effect of the Ni-Co oxides' efficient electrocatalytic ability and the improvement of the mass transfer ability of the electrode resulting from the alteration of the electrode surface structure. The doping of the metal oxides with nitrogen can further increase their conductivity, thereby enhancing their catalytic performance for redox reactions. The Multiphysics simulation results on the electrode surface demonstrate that the upright channels between the needle arrays facilitate the full and rapid reaction of vanadium ions on the electrode surface, enabling the products to be detached from the electrode in a timely manner, which in turn reduces the concentration polarization on the electrode surface.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信