Correction to the conventional Klingler-Kochi method for accurate assessment of electrochemical kinetic parameters utilizing cyclic voltammetry

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Rahul Agarwal
{"title":"Correction to the conventional Klingler-Kochi method for accurate assessment of electrochemical kinetic parameters utilizing cyclic voltammetry","authors":"Rahul Agarwal","doi":"10.1016/j.electacta.2025.146081","DOIUrl":null,"url":null,"abstract":"<div><div>The conventional Klingler-Kochi method has been utilized for several decades and has recently gained significant traction in the estimation of electrochemical kinetic parameters. This includes the determination of formal electrode potential (<span><math><msubsup><mi>E</mi><mrow><mi>f</mi></mrow><mn>0</mn></msubsup></math></span>), standard rate constant (<span><math><msup><mrow><mi>k</mi></mrow><mn>0</mn></msup></math></span>) and dimensionless kinetic parameter (ψ) through the technique of cyclic voltammetry. However, the values obtained through this method occasionally exhibit significant discrepancies when compared to those derived from alternative techniques. The validation of the analytically derived Klingler-Kochi equations through alternate theoretical approach namely numerical methods (digital simulations) has revealed inaccuracies, resulting in misleading interpretations of kinetic data. Consequently, the original equations proposed by Klingler-Kochi have been re-derived, resulting in the refinement of the previous equations. This revised approach is referred to as the corrected Klingler-Kochi method, which should be employed for the accurate estimation of <span><math><msubsup><mi>E</mi><mrow><mi>f</mi></mrow><mn>0</mn></msubsup></math></span>, <span><math><msup><mrow><mi>k</mi></mrow><mn>0</mn></msup></math></span> and ψ for redox couples that adhere to the Butler-Volmer kinetic model, particularly those with a peak potential difference greater than 150 mV and a cathodic charge transfer coefficient (<span><math><msub><mi>α</mi><mi>c</mi></msub></math></span>) within the range of 0.3 &lt; <span><math><msub><mi>α</mi><mi>c</mi></msub></math></span> &lt; 0.7. The assertions are additionally substantiated by experimental validation through voltammetric analysis of the redox couples <span><math><mrow><mspace></mspace><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span>, <span><math><mrow><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span>, <span><math><mrow><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span>. Both the conventional and corrected Klingler-Kochi methods yield comparable kinetic results (<span><math><msubsup><mi>E</mi><mrow><mi>f</mi></mrow><mn>0</mn></msubsup></math></span> and <span><math><mrow><mspace></mspace><msup><mrow><mi>k</mi></mrow><mn>0</mn></msup></mrow></math></span>) for the <span><math><mrow><mspace></mspace><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span> couple, which exhibits an <span><math><msub><mi>α</mi><mi>c</mi></msub></math></span> value near 0.5. However, the conventional Klingler-Kochi method produces inaccurate results for the <span><math><mrow><mspace></mspace><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span>, <span><math><mrow><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> redox couples, where the <span><math><msub><mi>α</mi><mi>c</mi></msub></math></span> values significantly diverge from 0.5. In contrast, the corrected Klingler-Kochi method accurately predicts the kinetic parameters for all examined redox couples, further corroborated by digital simulations.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"525 ","pages":"Article 146081"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625004438","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The conventional Klingler-Kochi method has been utilized for several decades and has recently gained significant traction in the estimation of electrochemical kinetic parameters. This includes the determination of formal electrode potential (Ef0), standard rate constant (k0) and dimensionless kinetic parameter (ψ) through the technique of cyclic voltammetry. However, the values obtained through this method occasionally exhibit significant discrepancies when compared to those derived from alternative techniques. The validation of the analytically derived Klingler-Kochi equations through alternate theoretical approach namely numerical methods (digital simulations) has revealed inaccuracies, resulting in misleading interpretations of kinetic data. Consequently, the original equations proposed by Klingler-Kochi have been re-derived, resulting in the refinement of the previous equations. This revised approach is referred to as the corrected Klingler-Kochi method, which should be employed for the accurate estimation of Ef0, k0 and ψ for redox couples that adhere to the Butler-Volmer kinetic model, particularly those with a peak potential difference greater than 150 mV and a cathodic charge transfer coefficient (αc) within the range of 0.3 < αc < 0.7. The assertions are additionally substantiated by experimental validation through voltammetric analysis of the redox couples [UO2(CO3)3]4/[UO2(CO3)3]5, [PuO2(CO3)3]4/[PuO2(CO3)3]5, Fe3+/Fe2+ and Eu3+/Eu2+. Both the conventional and corrected Klingler-Kochi methods yield comparable kinetic results (Ef0 and k0) for the [UO2(CO3)3]4/[UO2(CO3)3]5 couple, which exhibits an αc value near 0.5. However, the conventional Klingler-Kochi method produces inaccurate results for the [PuO2(CO3)3]4/[PuO2(CO3)3]5, Fe3+/Fe2+ and Eu3+/Eu2+ redox couples, where the αc values significantly diverge from 0.5. In contrast, the corrected Klingler-Kochi method accurately predicts the kinetic parameters for all examined redox couples, further corroborated by digital simulations.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信