Combination of suspect and nontarget screening with exposure assessment for per- and polyfluoroalkyl substance prioritization in Chinese municipal wastewater
Hongxin Mu , Ling Chen , Rong Zhou , Luyao Gu , Yue Yu , Jin Tang , Houhu Zhang , Hongqiang Ren , Bing Wu , Yuanqing Bu
{"title":"Combination of suspect and nontarget screening with exposure assessment for per- and polyfluoroalkyl substance prioritization in Chinese municipal wastewater","authors":"Hongxin Mu , Ling Chen , Rong Zhou , Luyao Gu , Yue Yu , Jin Tang , Houhu Zhang , Hongqiang Ren , Bing Wu , Yuanqing Bu","doi":"10.1016/j.envint.2025.109384","DOIUrl":null,"url":null,"abstract":"<div><div>Municipal wastewater treatment plants (WWTPs) are significant sources of per- and polyfluoroalkyl substances (PFASs) in aquatic environments, making their identification and priority rank crucial for risk control. Wastewater samples were collected from 148 municipal WWTPs in China to determine the occurrence and risk prioritization of PFASs. A total of 61 PFASs were identified, including 14 legacy and 47 emerging PFASs, using machine learning prediction-enhanced suspect and nontarget screening techniques. PFASs were detected in all wastewater samples, with perfluorocarboxylic acid (PFCA), perfluorosulfonic acid (PFSA), fluoromeric sulfonic acid (FTSA), and perfluoroalkyl sulfonamide-like (PFSM) substances being the predominant classes. The exposure loads of legacy and emerging PFASs to the Chinese population were 71.8 and 52.9 μg·day<sup>−1</sup>·people<sup>−1</sup>, respectively, and textile and clothing products might be the primary PFAS exposure pathways. Through a risk prioritization method integrating toxicity and exposure data, ten legacy and five emerging PFASs were flagged as high-priority substances requiring additional attention. As the PFAS risk removal efficiency by conventional biological treatment processes was only 0.7 %, the PFAS risk priority patterns in influent and effluent were similar (<em>r</em> = 0.86, <em>p</em> < 0.01). In addition, there were significant regional differences in the PFAS risk distribution, and the PFAS risk in eastern China was higher than that in other regions. This study offers novel insights for the identification and priority control assessment of PFASs and other emerging environmental contaminants.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"198 ","pages":"Article 109384"},"PeriodicalIF":10.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412025001357","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Municipal wastewater treatment plants (WWTPs) are significant sources of per- and polyfluoroalkyl substances (PFASs) in aquatic environments, making their identification and priority rank crucial for risk control. Wastewater samples were collected from 148 municipal WWTPs in China to determine the occurrence and risk prioritization of PFASs. A total of 61 PFASs were identified, including 14 legacy and 47 emerging PFASs, using machine learning prediction-enhanced suspect and nontarget screening techniques. PFASs were detected in all wastewater samples, with perfluorocarboxylic acid (PFCA), perfluorosulfonic acid (PFSA), fluoromeric sulfonic acid (FTSA), and perfluoroalkyl sulfonamide-like (PFSM) substances being the predominant classes. The exposure loads of legacy and emerging PFASs to the Chinese population were 71.8 and 52.9 μg·day−1·people−1, respectively, and textile and clothing products might be the primary PFAS exposure pathways. Through a risk prioritization method integrating toxicity and exposure data, ten legacy and five emerging PFASs were flagged as high-priority substances requiring additional attention. As the PFAS risk removal efficiency by conventional biological treatment processes was only 0.7 %, the PFAS risk priority patterns in influent and effluent were similar (r = 0.86, p < 0.01). In addition, there were significant regional differences in the PFAS risk distribution, and the PFAS risk in eastern China was higher than that in other regions. This study offers novel insights for the identification and priority control assessment of PFASs and other emerging environmental contaminants.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.