Temperature-dependent carbon shell engineering for highly durable Pt@C catalysts in the oxygen reduction reaction

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Eunbi Park , Eunjik Lee , Jungmin Han , Youngjoo Whang , Yongmin Kwon , Narim Kim , Byeong-Seon An , Namgee Jung , Gu-Gon Park
{"title":"Temperature-dependent carbon shell engineering for highly durable Pt@C catalysts in the oxygen reduction reaction","authors":"Eunbi Park ,&nbsp;Eunjik Lee ,&nbsp;Jungmin Han ,&nbsp;Youngjoo Whang ,&nbsp;Yongmin Kwon ,&nbsp;Narim Kim ,&nbsp;Byeong-Seon An ,&nbsp;Namgee Jung ,&nbsp;Gu-Gon Park","doi":"10.1016/j.apsusc.2025.163043","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we developed a straightforward and scalable all-dry synthetic process for carbon shell-encapsulated Pt catalysts (Pt@C/C) and analyzed the morphological evolution of the carbon shell at various heat-treatment temperatures. We investigated the impact of these morphological changes on the catalytic activity and durability for the oxygen reduction reaction (ORR). The synthesis process involved ball-milling Pt(acac)<sub>2</sub> and carbon black, followed by heat treatment under nitrogen at 200–800 °C. The resulting Pt@C/C samples exhibited an ultrathin carbon shell thickness of less than 1 nm and Pt nanoparticles (2–4 nm) uniformly dispersed on the carbon support. <em>In-situ</em> heating transmission electron microscopy revealed critical morphological transitions: thin amorphous carbon shells (&lt;1 nm) at 200 °C, partial shell decomposition at 400 °C, and dense graphene layers (1–2 layers) at temperatures ≥ 600 °C. Pt@C/C samples prepared at 200 and 400 °C exhibited superior mass and specific ORR activities compared to Pt/C, attributed to the uniform size of Pt nanoparticles and the carbon shell mitigating ionomer poisoning. The carbon shells maintained integrity during 30,000 cycles of accelerated stress test, minimizing Pt particle growth and ensuring superior durability over Pt/C. This method eliminates the need for high temperatures (&gt;600 °C) and additional etching, achieving outstanding catalytic activity and durability at temperatures ≤ 400 °C.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"698 ","pages":"Article 163043"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225007573","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we developed a straightforward and scalable all-dry synthetic process for carbon shell-encapsulated Pt catalysts (Pt@C/C) and analyzed the morphological evolution of the carbon shell at various heat-treatment temperatures. We investigated the impact of these morphological changes on the catalytic activity and durability for the oxygen reduction reaction (ORR). The synthesis process involved ball-milling Pt(acac)2 and carbon black, followed by heat treatment under nitrogen at 200–800 °C. The resulting Pt@C/C samples exhibited an ultrathin carbon shell thickness of less than 1 nm and Pt nanoparticles (2–4 nm) uniformly dispersed on the carbon support. In-situ heating transmission electron microscopy revealed critical morphological transitions: thin amorphous carbon shells (<1 nm) at 200 °C, partial shell decomposition at 400 °C, and dense graphene layers (1–2 layers) at temperatures ≥ 600 °C. Pt@C/C samples prepared at 200 and 400 °C exhibited superior mass and specific ORR activities compared to Pt/C, attributed to the uniform size of Pt nanoparticles and the carbon shell mitigating ionomer poisoning. The carbon shells maintained integrity during 30,000 cycles of accelerated stress test, minimizing Pt particle growth and ensuring superior durability over Pt/C. This method eliminates the need for high temperatures (>600 °C) and additional etching, achieving outstanding catalytic activity and durability at temperatures ≤ 400 °C.

Abstract Image

Abstract Image

温度依赖性碳壳工程用于高耐用Pt@C氧还原反应催化剂
在本研究中,我们开发了一种简单且可扩展的碳壳封装Pt催化剂(Pt@C/C)的全干合成工艺,并分析了碳壳在不同热处理温度下的形态演变。我们研究了这些形态变化对氧还原反应(ORR)的催化活性和耐久性的影响。合成工艺为球磨Pt(acac)2和炭黑,然后在200-800 °C氮气下热处理。所得Pt@C/C样品具有小于1 nm的超薄碳壳厚度和均匀分布在碳载体上的铂纳米颗粒(2 ~ 4 nm)。原位加热透射电子显微镜显示了关键的形态转变:在200 °C时,薄的无定形碳壳(<1 nm),在400 °C时,部分壳分解,在 ≥ 600 °C时,致密的石墨烯层(1 - 2层)。与Pt/C相比,在200和400 °C下制备的Pt@C/C样品表现出更好的质量和比ORR活性,这是由于Pt纳米颗粒的均匀尺寸和碳壳减轻了离子单体中毒。碳壳在30,000次加速应力测试中保持完整性,最大限度地减少了Pt颗粒的生长,并确保了比Pt/C更高的耐久性。该方法消除了高温(>600 °C)和额外蚀刻的需要,在 ≤ 400 °C的温度下实现了出色的催化活性和耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信