Long-lasting supercapacitor with stable electrode-electrolyte interface enabled by a biopolymer conjugate electrolyte additive

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Seonghun Lee , Ji Young Park , Hyungsub Yoon , Jiyoon Park , Joohyung Lee , Byungil Hwang , Vinod V.T. Padil , Jun Young Cheong , Tae Gwang Yun
{"title":"Long-lasting supercapacitor with stable electrode-electrolyte interface enabled by a biopolymer conjugate electrolyte additive","authors":"Seonghun Lee ,&nbsp;Ji Young Park ,&nbsp;Hyungsub Yoon ,&nbsp;Jiyoon Park ,&nbsp;Joohyung Lee ,&nbsp;Byungil Hwang ,&nbsp;Vinod V.T. Padil ,&nbsp;Jun Young Cheong ,&nbsp;Tae Gwang Yun","doi":"10.1016/j.ensm.2025.104195","DOIUrl":null,"url":null,"abstract":"<div><div>Supercapacitor is one of most widely researched energy storage system because it stores more charge than capacitor and charges-discharges quicker than batteries. As surface reaction is prominent in the energy storage in supercapacitor, stable interface between electrode and electrolyte is a key to high performance. Although a formation of stable interface was achieved by surface modification of electrode and/or designing of novel materials/composites, they were limited by their complicated processing steps, costs, scalability, and eco-friendliness. In this work, we have firstly introduced a novel electrolyte additive composed of conjugated biopolymer of gum kondagogu/sodium alginate (KS), which is widely available and recyclable. At the KS concentration of 5 mg ml<sup>-1</sup>, the capacitance retention improved from 58 % to 93 % for 30,000 cycles at a current density of 4.0 mA cm<sup>-2</sup>, which was remarkable given the use of acidic H<sub>2</sub>SO<sub>4</sub> electrolyte and carbon-based electrode. Postmortem analysis revealed the suitable concentration of KS necessary to ensure the interfacial protection as well as alleviation of side reactions by the introduction of KS, which can also be extended and scaled up in an industry scale.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"77 ","pages":"Article 104195"},"PeriodicalIF":18.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725001953","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitor is one of most widely researched energy storage system because it stores more charge than capacitor and charges-discharges quicker than batteries. As surface reaction is prominent in the energy storage in supercapacitor, stable interface between electrode and electrolyte is a key to high performance. Although a formation of stable interface was achieved by surface modification of electrode and/or designing of novel materials/composites, they were limited by their complicated processing steps, costs, scalability, and eco-friendliness. In this work, we have firstly introduced a novel electrolyte additive composed of conjugated biopolymer of gum kondagogu/sodium alginate (KS), which is widely available and recyclable. At the KS concentration of 5 mg ml-1, the capacitance retention improved from 58 % to 93 % for 30,000 cycles at a current density of 4.0 mA cm-2, which was remarkable given the use of acidic H2SO4 electrolyte and carbon-based electrode. Postmortem analysis revealed the suitable concentration of KS necessary to ensure the interfacial protection as well as alleviation of side reactions by the introduction of KS, which can also be extended and scaled up in an industry scale.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信