Screening and diagnosis of colorectal cancer using nucleic acid aptamers targeting Solobacterium moorei: Development of electrochemical sensors for clinical application

IF 8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Decai Yuan , Cheng Qiu , Hui Chen , Feng Liu , Shanshan Feng , Peiyi Zhang , Ying Qin , Tingting Fan , Yan Chen , Yuyang Jiang
{"title":"Screening and diagnosis of colorectal cancer using nucleic acid aptamers targeting Solobacterium moorei: Development of electrochemical sensors for clinical application","authors":"Decai Yuan ,&nbsp;Cheng Qiu ,&nbsp;Hui Chen ,&nbsp;Feng Liu ,&nbsp;Shanshan Feng ,&nbsp;Peiyi Zhang ,&nbsp;Ying Qin ,&nbsp;Tingting Fan ,&nbsp;Yan Chen ,&nbsp;Yuyang Jiang","doi":"10.1016/j.snb.2025.137669","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal cancer (CRC) represents a significant global health issue, necessitating innovative approaches for early screening and diagnosis. Recent advances in molecular diagnostics have highlighted the potential of aptamers for use as highly specific and sensitive probes for detecting cancer biomarkers. In this study, we focus on the identification of aptamers that selectively bind to <em>Solobacterium moorei (S. moorei)</em>, a bacterium associated with CRC. By integrating these aptamers into electrochemical sensor platforms, a reliable diagnostic tool is created for facile implementation in the clinical setting. More specifically, nucleic acid aptamers for <em>S. moorei</em> were obtained through whole-cell SELEX, and the affinity and specificity of these aptamers were validated. Subsequently, two types of electrochemical sensors were developed. Firstly, an electrochemical impedance spectroscopy sensor was developed to detect impedance changes on the electrode surface, which were caused by the binding of <em>S. moorei</em> to the aptamer. Secondly, a CRISPR/Cas12a-based electrochemical aptasensor was developed based on the ability of the Cas12a enzyme to be activated by specific single-stranded DNA, triggering its trans-cleavage activity. The limits of detection of these sensors for <em>S. moorei</em> were 30 and 6 CFU/mL, respectively. Clinical validation was performed using patient samples to assess the sensor efficacy in a real-world setting. The obtained results suggested that the abundance of <em>S. moorei</em> in the feces of CRC patients was significantly greater compared to that of healthy individuals. This integration of <em>S. moorei</em> aptamers into electrochemical sensors offers a non-invasive and cost-effective alternative to current screening methods available for CRC.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"436 ","pages":"Article 137669"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400525004447","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) represents a significant global health issue, necessitating innovative approaches for early screening and diagnosis. Recent advances in molecular diagnostics have highlighted the potential of aptamers for use as highly specific and sensitive probes for detecting cancer biomarkers. In this study, we focus on the identification of aptamers that selectively bind to Solobacterium moorei (S. moorei), a bacterium associated with CRC. By integrating these aptamers into electrochemical sensor platforms, a reliable diagnostic tool is created for facile implementation in the clinical setting. More specifically, nucleic acid aptamers for S. moorei were obtained through whole-cell SELEX, and the affinity and specificity of these aptamers were validated. Subsequently, two types of electrochemical sensors were developed. Firstly, an electrochemical impedance spectroscopy sensor was developed to detect impedance changes on the electrode surface, which were caused by the binding of S. moorei to the aptamer. Secondly, a CRISPR/Cas12a-based electrochemical aptasensor was developed based on the ability of the Cas12a enzyme to be activated by specific single-stranded DNA, triggering its trans-cleavage activity. The limits of detection of these sensors for S. moorei were 30 and 6 CFU/mL, respectively. Clinical validation was performed using patient samples to assess the sensor efficacy in a real-world setting. The obtained results suggested that the abundance of S. moorei in the feces of CRC patients was significantly greater compared to that of healthy individuals. This integration of S. moorei aptamers into electrochemical sensors offers a non-invasive and cost-effective alternative to current screening methods available for CRC.
利用以莫雷溶杆菌为靶标的核酸适配体筛查和诊断结直肠癌:开发用于临床应用的电化学传感器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信