Ordered zinc electrodeposition from single-crystal units to polycrystalline stacking within solid-electrolyte interphase in battery anodes

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ming Zhao, Yanqun Lv, Yunkai Xu, Huachao Yang, Zheng Bo, Jun Lu
{"title":"Ordered zinc electrodeposition from single-crystal units to polycrystalline stacking within solid-electrolyte interphase in battery anodes","authors":"Ming Zhao, Yanqun Lv, Yunkai Xu, Huachao Yang, Zheng Bo, Jun Lu","doi":"10.1038/s41467-025-58063-3","DOIUrl":null,"url":null,"abstract":"<p>Controlling Zinc (Zn) nucleation and subsequent crystal growth are critical for long lifespan aqueous zinc metal batteries. However, the concurrent side reactions and unstable solid-electrolyte interphase (SEI) formations impedes the continuous Zn metal electrodeposition. Herein, induced by a well-designed organic/inorganic dual-phase SEI, we realize ordered zinc electrodeposition of polycrystalline stackings from single-crystal building blocks. The uncommon SEI with appropriate ion transport kinetics and thermodynamic stability protects deposited zinc from side reactions of hydrogen evolution and metal corrosion, enabling rapid and long single crystal Zn nucleation, followed by mitigated crystal growth, and ultimately dense polycrystalline stacking without dendrites. Benefited from the above advantages, the Zn | |Zn symmetric batteries exhibit long lifespan exceeding 5600 h and high depth of discharge of 85.0 %, and the Zn | |I<sub>2</sub> full cell delivers a high capacity of 201.9 mAh g<sup>-1</sup> at -30 <sup>o</sup>C. Furthermore, the practical 0.1 Ah Zn | |I<sub>2</sub> bilayer pouch cell can stably operate for 113 cycles with a high specific energy of 122.1 Wh kg<sup>-1</sup> with a low N/P capacity ratio of 1.5. Our findings advance the understanding of critical roles of SEI on zinc electrodeposition behaviors and provide valuable insights into crystal structure regulation during electrodeposition in other metal batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58063-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling Zinc (Zn) nucleation and subsequent crystal growth are critical for long lifespan aqueous zinc metal batteries. However, the concurrent side reactions and unstable solid-electrolyte interphase (SEI) formations impedes the continuous Zn metal electrodeposition. Herein, induced by a well-designed organic/inorganic dual-phase SEI, we realize ordered zinc electrodeposition of polycrystalline stackings from single-crystal building blocks. The uncommon SEI with appropriate ion transport kinetics and thermodynamic stability protects deposited zinc from side reactions of hydrogen evolution and metal corrosion, enabling rapid and long single crystal Zn nucleation, followed by mitigated crystal growth, and ultimately dense polycrystalline stacking without dendrites. Benefited from the above advantages, the Zn | |Zn symmetric batteries exhibit long lifespan exceeding 5600 h and high depth of discharge of 85.0 %, and the Zn | |I2 full cell delivers a high capacity of 201.9 mAh g-1 at -30 oC. Furthermore, the practical 0.1 Ah Zn | |I2 bilayer pouch cell can stably operate for 113 cycles with a high specific energy of 122.1 Wh kg-1 with a low N/P capacity ratio of 1.5. Our findings advance the understanding of critical roles of SEI on zinc electrodeposition behaviors and provide valuable insights into crystal structure regulation during electrodeposition in other metal batteries.

Abstract Image

控制锌(Zn)的成核和随后的晶体生长对于锌金属水电池的长寿命至关重要。然而,同时发生的副反应和不稳定的固电解质相(SEI)形成阻碍了锌金属的持续电沉积。在此,我们通过精心设计的有机/无机双相 SEI,实现了从单晶构建块到多晶堆积的有序锌电沉积。这种不常见的 SEI 具有适当的离子传输动力学和热力学稳定性,可保护沉积的锌免受氢进化和金属腐蚀等副反应的影响,从而实现快速、长时间的单晶锌成核,随后晶体缓和生长,最终形成无枝晶的致密多晶堆积。得益于上述优势,Zn | |Zn 对称电池的寿命长达 5600 小时以上,放电深度高达 85.0%,Zn | |I2 全电池在零下 30 摄氏度时可提供 201.9 mAh g-1 的高容量。此外,实用的 0.1 Ah Zn | |I2 双层袋电池可稳定运行 113 个循环,比能量高达 122.1 Wh kg-1,N/P 容量比低至 1.5。我们的研究结果加深了人们对 SEI 对锌电沉积行为的关键作用的理解,并为其他金属电池电沉积过程中的晶体结构调节提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信