{"title":"Electrically Driven PANI-Based Multilayer Nanocomposite Coatings for Dynamic Color Modulation","authors":"Rui Li, Yuzhang Liang, Hui Zhang, Xinran Wei, Dmitry Sergeevich Bayko, Yurui Fang, Wei Peng","doi":"10.1021/acsami.5c00001","DOIUrl":null,"url":null,"abstract":"Reconfigurable precision regulation of structural color devices is a critical step toward versatile advanced functionality and broadening application scenarios. In this work, we demonstrate the precise manipulation of red, green, and blue, three primary colors generated by the five-layer nanocomposite coatings composed of polyaniline/indium tin oxide/titanium/titanium dioxide/titanium (PANI/ITO/Ti/TiO<sub>2</sub>/Ti). The modulation of dynamic structural colors of the proposed multilayer coatings originates from a cooperative interaction between the top PANI conductive polymer and the bottom traditional four-layer structural color consisting of ITO/Ti/TiO<sub>2</sub>/Ti. Specifically, the three primitive colors are first achieved by three different combinations of both TiO<sub>2</sub> and ITO thicknesses, and then each color is modulated precisely by an intrinsic color change of the top PANI conductive layer at various voltages. As a result, the nanocomposite coatings demonstrate millisecond response time, excellent durability over 100 cycles, driving voltages below 1 V, and a wide temperature tolerance range from 5 to 60 °C. Additionally, centimeter-scale R, G, and B letter-shaped samples are fabricated using a mask plate coating technique, showcasing color modulation in patterned samples. Our work offers a straightforward strategy to realize the dynamic manipulation of the three primary colors within a certain range, which lays a solid foundation for the development of dynamic display technologies, such as dynamic paintings and e-books.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c00001","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable precision regulation of structural color devices is a critical step toward versatile advanced functionality and broadening application scenarios. In this work, we demonstrate the precise manipulation of red, green, and blue, three primary colors generated by the five-layer nanocomposite coatings composed of polyaniline/indium tin oxide/titanium/titanium dioxide/titanium (PANI/ITO/Ti/TiO2/Ti). The modulation of dynamic structural colors of the proposed multilayer coatings originates from a cooperative interaction between the top PANI conductive polymer and the bottom traditional four-layer structural color consisting of ITO/Ti/TiO2/Ti. Specifically, the three primitive colors are first achieved by three different combinations of both TiO2 and ITO thicknesses, and then each color is modulated precisely by an intrinsic color change of the top PANI conductive layer at various voltages. As a result, the nanocomposite coatings demonstrate millisecond response time, excellent durability over 100 cycles, driving voltages below 1 V, and a wide temperature tolerance range from 5 to 60 °C. Additionally, centimeter-scale R, G, and B letter-shaped samples are fabricated using a mask plate coating technique, showcasing color modulation in patterned samples. Our work offers a straightforward strategy to realize the dynamic manipulation of the three primary colors within a certain range, which lays a solid foundation for the development of dynamic display technologies, such as dynamic paintings and e-books.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.