Henry J. Tanudjaja, Najat A. Amin, Adnan Qamar, Sarah Kerdi, Hussain Basamh, Thomas Altmann, Ratul Das, Noreddine Ghaffour
{"title":"Precise biofilm thickness prediction in SWRO desalination from planar camera images by DNN models","authors":"Henry J. Tanudjaja, Najat A. Amin, Adnan Qamar, Sarah Kerdi, Hussain Basamh, Thomas Altmann, Ratul Das, Noreddine Ghaffour","doi":"10.1038/s41545-025-00451-9","DOIUrl":null,"url":null,"abstract":"<p>Detecting and quantifying biofouling is a challenging process inside a seawater reverse osmosis (SWRO) module due to its design complexity and operating obstacles. Herein, deep Convolutional Neural Network (CNN) models were developed to accurately calculate the cross-sectional biofilm thickness (vertical plane) through membrane surface images (horizontal plane). Models took membrane surface image as input; the classification model (CNN-Class) predicted fouling classification, while the regression model (CNN-Reg) predicted the average biofilm thickness on the membrane surface. CNN-Class model showed 90% accuracy, and CNN-Reg reached a moderate mean difference of ±24% in predicting the classification and biofilm thickness, respectively. Both models performed well and validated with 80% accuracy in classification and a mean difference of ±18% in biofilm thickness prediction from a new set of unseen live OCT images. The developed CNN models are a novel technology that has the potential to be implemented in desalination plants for early decision-making and biofouling mitigation.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"13 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00451-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting and quantifying biofouling is a challenging process inside a seawater reverse osmosis (SWRO) module due to its design complexity and operating obstacles. Herein, deep Convolutional Neural Network (CNN) models were developed to accurately calculate the cross-sectional biofilm thickness (vertical plane) through membrane surface images (horizontal plane). Models took membrane surface image as input; the classification model (CNN-Class) predicted fouling classification, while the regression model (CNN-Reg) predicted the average biofilm thickness on the membrane surface. CNN-Class model showed 90% accuracy, and CNN-Reg reached a moderate mean difference of ±24% in predicting the classification and biofilm thickness, respectively. Both models performed well and validated with 80% accuracy in classification and a mean difference of ±18% in biofilm thickness prediction from a new set of unseen live OCT images. The developed CNN models are a novel technology that has the potential to be implemented in desalination plants for early decision-making and biofouling mitigation.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.