{"title":"Predictive coding and dimension-selective attention enhance the lateralization of spoken language processing","authors":"Basil C. Preisig , Martin Meyer","doi":"10.1016/j.neubiorev.2025.106111","DOIUrl":null,"url":null,"abstract":"<div><div>Hemispheric lateralization in speech and language processing exemplifies functional brain specialization. Seminal work in patients with left hemisphere damage highlighted the left-hemispheric dominance in language functions. However, speech processing is not confined to the left hemisphere. Hence, some researchers associate lateralization with auditory processing asymmetries: slow temporal and fine spectral acoustic information is preferentially processed in right auditory regions, while faster temporal information is primarily handled by left auditory regions. Other scholars posit that lateralization relates more to linguistic processing, particularly for speech and speech-like stimuli. We argue that these seemingly distinct accounts are interdependent. Linguistic analysis of speech relies on top-down processes, such as predictive coding and dimension-selective auditory attention, which enhance lateralized processing by engaging left-lateralized sensorimotor networks. Our review highlights that lateralization is weaker for simple sounds, stronger for speech-like sounds, and strongest for meaningful speech. Evidence shows that predictive speech processing and selective attention enhance lateralization. We illustrate that these top-down processes rely on left-lateralized sensorimotor networks and provide insights into the role of these networks in speech processing.</div></div>","PeriodicalId":56105,"journal":{"name":"Neuroscience and Biobehavioral Reviews","volume":"172 ","pages":"Article 106111"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience and Biobehavioral Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149763425001113","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hemispheric lateralization in speech and language processing exemplifies functional brain specialization. Seminal work in patients with left hemisphere damage highlighted the left-hemispheric dominance in language functions. However, speech processing is not confined to the left hemisphere. Hence, some researchers associate lateralization with auditory processing asymmetries: slow temporal and fine spectral acoustic information is preferentially processed in right auditory regions, while faster temporal information is primarily handled by left auditory regions. Other scholars posit that lateralization relates more to linguistic processing, particularly for speech and speech-like stimuli. We argue that these seemingly distinct accounts are interdependent. Linguistic analysis of speech relies on top-down processes, such as predictive coding and dimension-selective auditory attention, which enhance lateralized processing by engaging left-lateralized sensorimotor networks. Our review highlights that lateralization is weaker for simple sounds, stronger for speech-like sounds, and strongest for meaningful speech. Evidence shows that predictive speech processing and selective attention enhance lateralization. We illustrate that these top-down processes rely on left-lateralized sensorimotor networks and provide insights into the role of these networks in speech processing.
期刊介绍:
The official journal of the International Behavioral Neuroscience Society publishes original and significant review articles that explore the intersection between neuroscience and the study of psychological processes and behavior. The journal also welcomes articles that primarily focus on psychological processes and behavior, as long as they have relevance to one or more areas of neuroscience.