Ecological risk assessment and ingestion of microplastics in edible finfish and shellfish species collected from tropical mangrove forest, Southeastern India

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Sourav Bhattacharya , Prabhu Kolandhasamy , Abhishek Mandal , Rajendran Rajaram , Gopala Krishna Darbha
{"title":"Ecological risk assessment and ingestion of microplastics in edible finfish and shellfish species collected from tropical mangrove forest, Southeastern India","authors":"Sourav Bhattacharya ,&nbsp;Prabhu Kolandhasamy ,&nbsp;Abhishek Mandal ,&nbsp;Rajendran Rajaram ,&nbsp;Gopala Krishna Darbha","doi":"10.1016/j.chemosphere.2025.144308","DOIUrl":null,"url":null,"abstract":"<div><div>In the Pichavaram mangroves in Southeast India, this study examines the seasonal trends and consumption of microplastic (MPs) by several fish and shellfish species. Four different seasons viz. summer, pre-monsoon, monsoon, and post-monsoon were used to gather the fish and shellfish samples from Pichavaram Mangrove Forest. The results of the present investigation revealed that MP abundance was higher during the monsoon (45 %), suggesting seasonal runoff and increased plastic pollution during heavy rains as key contributors. We observed microplastics in <em>Liza tade</em> (mullet), with 13.33 MPs/individuals in the summer, 0.77 MPs/individuals in the pre-monsoon, 6.3 MPs/individuals in the monsoon, and 2.67 MPs/individuals in the post-monsoon. A significant proportion (32 %) of MPs were smaller than 1 mm. The fibres were predominated with blue (40 %) and red (13 %). The polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) were the primary polymers, according to μ-Raman spectroscopy. The fish species <em>Liza tade</em> and <em>Etroplus suratensis</em> showed the highest levels of contamination, while the shellfish species <em>Portunus sanguinolentus</em> and <em>Scylla serrata</em> did the same. Comparative global analyses reveal that mangrove ecosystems across different regions exhibit the presence of similar polymer types, but microplastic sources vary greatly from place to place. This work highlights the pervasive nature of MPs, their complex seasonal behavior, and their ecological implications, advocating for targeted mitigation strategies to address MP pollution and its potential risks to marine life and ecosystems.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"377 ","pages":"Article 144308"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525002504","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the Pichavaram mangroves in Southeast India, this study examines the seasonal trends and consumption of microplastic (MPs) by several fish and shellfish species. Four different seasons viz. summer, pre-monsoon, monsoon, and post-monsoon were used to gather the fish and shellfish samples from Pichavaram Mangrove Forest. The results of the present investigation revealed that MP abundance was higher during the monsoon (45 %), suggesting seasonal runoff and increased plastic pollution during heavy rains as key contributors. We observed microplastics in Liza tade (mullet), with 13.33 MPs/individuals in the summer, 0.77 MPs/individuals in the pre-monsoon, 6.3 MPs/individuals in the monsoon, and 2.67 MPs/individuals in the post-monsoon. A significant proportion (32 %) of MPs were smaller than 1 mm. The fibres were predominated with blue (40 %) and red (13 %). The polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) were the primary polymers, according to μ-Raman spectroscopy. The fish species Liza tade and Etroplus suratensis showed the highest levels of contamination, while the shellfish species Portunus sanguinolentus and Scylla serrata did the same. Comparative global analyses reveal that mangrove ecosystems across different regions exhibit the presence of similar polymer types, but microplastic sources vary greatly from place to place. This work highlights the pervasive nature of MPs, their complex seasonal behavior, and their ecological implications, advocating for targeted mitigation strategies to address MP pollution and its potential risks to marine life and ecosystems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信