Probing enzyme-dependent pseudouridylation using direct RNA sequencing to assess epitranscriptome plasticity in a neuronal cell line.

Oleksandra Fanari, Sepideh Tavakoli, Yuchen Qiu, Amr Makhamreh, Keqing Nian, Stuart Akeson, Michele Meseonznik, Caroline A McCormick, Dylan Bloch, Howard Gamper, Miten Jain, Ya-Ming Hou, Meni Wanunu, Sara H Rouhanifard
{"title":"Probing enzyme-dependent pseudouridylation using direct RNA sequencing to assess epitranscriptome plasticity in a neuronal cell line.","authors":"Oleksandra Fanari, Sepideh Tavakoli, Yuchen Qiu, Amr Makhamreh, Keqing Nian, Stuart Akeson, Michele Meseonznik, Caroline A McCormick, Dylan Bloch, Howard Gamper, Miten Jain, Ya-Ming Hou, Meni Wanunu, Sara H Rouhanifard","doi":"10.1016/j.cels.2025.101238","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical modifications in mRNAs, such as pseudouridine (psi), can control gene expression. Yet, we know little about how they are regulated, especially in neurons. We applied nanopore direct RNA sequencing to investigate psi dynamics in SH-SY5Y cells in response to two perturbations that model a natural and unnatural cellular state: retinoic-acid-mediated differentiation (healthy) and exposure to the neurotoxicant lead (unhealthy). We discovered that the expression of some psi writers changes significantly in response to physiological conditions. We also found that globally, lead-treated cells have more psi sites but lower relative occupancy than untreated cells and differentiated cells. Examples of highly plastic sites were accompanied by constant expression for psi writers, suggesting trans-regulation. Many positions were static throughout all three cellular states, suggestive of a \"housekeeping\" function. This study enables investigations into mechanisms that control psi modifications in neurons and their possible protective effects in response to cellular stress.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101238"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical modifications in mRNAs, such as pseudouridine (psi), can control gene expression. Yet, we know little about how they are regulated, especially in neurons. We applied nanopore direct RNA sequencing to investigate psi dynamics in SH-SY5Y cells in response to two perturbations that model a natural and unnatural cellular state: retinoic-acid-mediated differentiation (healthy) and exposure to the neurotoxicant lead (unhealthy). We discovered that the expression of some psi writers changes significantly in response to physiological conditions. We also found that globally, lead-treated cells have more psi sites but lower relative occupancy than untreated cells and differentiated cells. Examples of highly plastic sites were accompanied by constant expression for psi writers, suggesting trans-regulation. Many positions were static throughout all three cellular states, suggestive of a "housekeeping" function. This study enables investigations into mechanisms that control psi modifications in neurons and their possible protective effects in response to cellular stress.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信