LUNETR: Language-Infused UNETR for precise pancreatic tumor segmentation in 3D medical image

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ziyang Shi , Ruopeng Zhang , Xiajun Wei , Cheng Yu , Haojie Xie , Zhen Hu , Xili Chen , Yongzhong Zhang , Bin Xie , Zhengmao Luo , Wanxiang Peng , Xiaochun Xie , Fang Li , Xiaoli Long , Lin Li , Linan Hu
{"title":"LUNETR: Language-Infused UNETR for precise pancreatic tumor segmentation in 3D medical image","authors":"Ziyang Shi ,&nbsp;Ruopeng Zhang ,&nbsp;Xiajun Wei ,&nbsp;Cheng Yu ,&nbsp;Haojie Xie ,&nbsp;Zhen Hu ,&nbsp;Xili Chen ,&nbsp;Yongzhong Zhang ,&nbsp;Bin Xie ,&nbsp;Zhengmao Luo ,&nbsp;Wanxiang Peng ,&nbsp;Xiaochun Xie ,&nbsp;Fang Li ,&nbsp;Xiaoli Long ,&nbsp;Lin Li ,&nbsp;Linan Hu","doi":"10.1016/j.neunet.2025.107414","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of early micro-lesions and adjacent blood vessels in CT scans plays a pivotal role in the clinical diagnosis of pancreatic cancer, considering its aggressive nature and high fatality rate. Despite the widespread application of deep learning methods for this task, several challenges persist: (1) the complex background environment in abdominal CT scans complicates the accurate localization of potential micro-tumors; (2) the subtle contrast between micro-lesions within pancreatic tissue and the surrounding tissues makes it challenging for models to capture these features accurately; and (3) tumors that invade adjacent blood vessels pose significant barriers to surgical procedures. To address these challenges, we propose LUNETR (Language-Infused UNETR), an advanced multimodal encoder model that combines textual and image information for precise medical image segmentation. The integration of an autoencoding language model with cross-attention enabling our model to effectively leverage semantic associations between textual and image data, thereby facilitating precise localization of potential pancreatic micro-tumors. Additionally, we designed a Multi-scale Aggregation Attention (MSAA) module to comprehensively capture both spatial and channel characteristics of global multi-scale image data, enhancing the model's capacity to extract features from micro-lesions embedded within pancreatic tissue. Furthermore, in order to facilitate precise segmentation of pancreatic tumors and nearby blood vessels and address the scarcity of multimodal medical datasets, we collaborated with Zhuzhou Central Hospital to construct a multimodal dataset comprising CT images and corresponding pathology reports from 135 pancreatic cancer patients. Our experimental results surpass current state-of-the-art models, with the incorporation of the semantic encoder improving the average Dice score for pancreatic tumor segmentation by 2.23 %. For the Medical Segmentation Decathlon (MSD) liver and lung cancer datasets, our model achieved an average Dice score improvement of 4.31 % and 3.67 %, respectively, demonstrating the efficacy of the LUNETR.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107414"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089360802500293X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of early micro-lesions and adjacent blood vessels in CT scans plays a pivotal role in the clinical diagnosis of pancreatic cancer, considering its aggressive nature and high fatality rate. Despite the widespread application of deep learning methods for this task, several challenges persist: (1) the complex background environment in abdominal CT scans complicates the accurate localization of potential micro-tumors; (2) the subtle contrast between micro-lesions within pancreatic tissue and the surrounding tissues makes it challenging for models to capture these features accurately; and (3) tumors that invade adjacent blood vessels pose significant barriers to surgical procedures. To address these challenges, we propose LUNETR (Language-Infused UNETR), an advanced multimodal encoder model that combines textual and image information for precise medical image segmentation. The integration of an autoencoding language model with cross-attention enabling our model to effectively leverage semantic associations between textual and image data, thereby facilitating precise localization of potential pancreatic micro-tumors. Additionally, we designed a Multi-scale Aggregation Attention (MSAA) module to comprehensively capture both spatial and channel characteristics of global multi-scale image data, enhancing the model's capacity to extract features from micro-lesions embedded within pancreatic tissue. Furthermore, in order to facilitate precise segmentation of pancreatic tumors and nearby blood vessels and address the scarcity of multimodal medical datasets, we collaborated with Zhuzhou Central Hospital to construct a multimodal dataset comprising CT images and corresponding pathology reports from 135 pancreatic cancer patients. Our experimental results surpass current state-of-the-art models, with the incorporation of the semantic encoder improving the average Dice score for pancreatic tumor segmentation by 2.23 %. For the Medical Segmentation Decathlon (MSD) liver and lung cancer datasets, our model achieved an average Dice score improvement of 4.31 % and 3.67 %, respectively, demonstrating the efficacy of the LUNETR.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信