Kevin S Chen, Anuj K Sharma, Jonathan W Pillow, Andrew M Leifer
{"title":"Navigation strategies in Caenorhabditis elegans are differentially altered by learning.","authors":"Kevin S Chen, Anuj K Sharma, Jonathan W Pillow, Andrew M Leifer","doi":"10.1371/journal.pbio.3003005","DOIUrl":null,"url":null,"abstract":"<p><p>Learned olfactory-guided navigation is a powerful platform for studying how a brain generates goal-directed behaviors. However, the quantitative changes that occur in sensorimotor transformations and the underlying neural circuit substrates to generate such learning-dependent navigation is still unclear. Here we investigate learned sensorimotor processing for navigation in the nematode Caenorhabditis elegans by measuring and modeling experience-dependent odor and salt chemotaxis. We then explore the neural basis of learned odor navigation through perturbation experiments. We develop a novel statistical model to characterize how the worm employs two behavioral strategies: a biased random walk and weathervaning. We infer weights on these strategies and characterize sensorimotor kernels that govern them by fitting our model to the worm's time-varying navigation trajectories and precise sensory experiences. After olfactory learning, the fitted odor kernels reflect how appetitive and aversive trained worms up- and down-regulate both strategies, respectively. The model predicts an animal's past olfactory learning experience with > 90% accuracy given finite observations, outperforming a classical chemotaxis metric. The model trained on natural odors further predicts the animals' learning-dependent response to optogenetically induced odor perception. Our measurements and model show that behavioral variability is altered by learning-trained worms exhibit less variable navigation than naive ones. Genetically disrupting individual interneuron classes downstream of an odor-sensing neuron reveals that learned navigation strategies are distributed in the network. Together, we present a flexible navigation algorithm that is supported by distributed neural computation in a compact brain.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 3","pages":"e3003005"},"PeriodicalIF":9.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Learned olfactory-guided navigation is a powerful platform for studying how a brain generates goal-directed behaviors. However, the quantitative changes that occur in sensorimotor transformations and the underlying neural circuit substrates to generate such learning-dependent navigation is still unclear. Here we investigate learned sensorimotor processing for navigation in the nematode Caenorhabditis elegans by measuring and modeling experience-dependent odor and salt chemotaxis. We then explore the neural basis of learned odor navigation through perturbation experiments. We develop a novel statistical model to characterize how the worm employs two behavioral strategies: a biased random walk and weathervaning. We infer weights on these strategies and characterize sensorimotor kernels that govern them by fitting our model to the worm's time-varying navigation trajectories and precise sensory experiences. After olfactory learning, the fitted odor kernels reflect how appetitive and aversive trained worms up- and down-regulate both strategies, respectively. The model predicts an animal's past olfactory learning experience with > 90% accuracy given finite observations, outperforming a classical chemotaxis metric. The model trained on natural odors further predicts the animals' learning-dependent response to optogenetically induced odor perception. Our measurements and model show that behavioral variability is altered by learning-trained worms exhibit less variable navigation than naive ones. Genetically disrupting individual interneuron classes downstream of an odor-sensing neuron reveals that learned navigation strategies are distributed in the network. Together, we present a flexible navigation algorithm that is supported by distributed neural computation in a compact brain.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.