Wenqi Zhang , Ruolan Yang , Lai Wei , Jinxu Wei , Xiangying Meng , Hanyue Ma , Yujia Pang , Yuanyuan Li , Hui Xia , Songmei Wu
{"title":"An ultra-thin MXene film with high conversion efficiency for broadband ultrasonic photoacoustic transducer","authors":"Wenqi Zhang , Ruolan Yang , Lai Wei , Jinxu Wei , Xiangying Meng , Hanyue Ma , Yujia Pang , Yuanyuan Li , Hui Xia , Songmei Wu","doi":"10.1016/j.ultras.2025.107633","DOIUrl":null,"url":null,"abstract":"<div><div>High-pressure, broadband, and miniatured ultrasound emitters are urgently needed in biomedical imaging and treatment as well as non-destructive detection. In this work, we report a laser generated ultrasonic photoacoustic transducer (LGUPT) based on an ultra-thin layer of MXene (Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>T<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>) nanosheets. Under the excitation of <span><math><mrow><mn>532</mn><mspace></mspace><mi>nm</mi></mrow></math></span> nanosecond laser pulses, the amplitude of the generated sound pressure can reach <span><math><mrow><mn>8</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>MPa</mi></mrow></math></span>, with a bandwidth of <span><math><mrow><mn>17</mn><mo>.</mo><mn>4</mn><mspace></mspace><mi>MHz</mi></mrow></math></span> at the irradiation intensity of <span><math><mrow><mn>17</mn><mo>.</mo><mn>72</mn><mspace></mspace><mi>mJ</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. The photoacoustic conversion efficiency of the <span><math><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>-thick MXene film/PDMS transducer was found to be <span><math><mrow><mn>1</mn><mo>.</mo><mn>21</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, which is among the highest values reported to date. The MXene thin film can also be drop-casted on the curved surface of a focusing lens. The amplitude of the sound pressure signal can reach 25.3 <span><math><mi>MPa</mi></math></span> and the bandwidth <span><math><mrow><mn>19</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>MHz</mi></mrow></math></span> at a pulse laser energy of <span><math><mrow><mn>28</mn><mo>.</mo><mn>12</mn><mspace></mspace><mi>mJ</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. The width of the focal spot at −3 dB of maximum amplitude was found in the range of <span><math><mrow><mi>0.14</mi><mspace></mspace><mi>mm</mi></mrow></math></span> for the optical lens based LGUPT under the condition of a laser spot diameter of <span><math><mrow><mi>15</mi><mspace></mspace><mi>mm</mi></mrow></math></span> by theoretical simulation. The water processable focusing LGUPT demonstrated excellent ultrasonic cavitation effect on the tissue mimicking agar plate. Our experimental and theoretical work highlights the potential of ultra-thin MXene film based LGUPTs for high precision photoacoustic therapy, integrated imaging and sensing instruments.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"152 ","pages":"Article 107633"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000708","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-pressure, broadband, and miniatured ultrasound emitters are urgently needed in biomedical imaging and treatment as well as non-destructive detection. In this work, we report a laser generated ultrasonic photoacoustic transducer (LGUPT) based on an ultra-thin layer of MXene (TiCT) nanosheets. Under the excitation of nanosecond laser pulses, the amplitude of the generated sound pressure can reach , with a bandwidth of at the irradiation intensity of . The photoacoustic conversion efficiency of the -thick MXene film/PDMS transducer was found to be , which is among the highest values reported to date. The MXene thin film can also be drop-casted on the curved surface of a focusing lens. The amplitude of the sound pressure signal can reach 25.3 and the bandwidth at a pulse laser energy of . The width of the focal spot at −3 dB of maximum amplitude was found in the range of for the optical lens based LGUPT under the condition of a laser spot diameter of by theoretical simulation. The water processable focusing LGUPT demonstrated excellent ultrasonic cavitation effect on the tissue mimicking agar plate. Our experimental and theoretical work highlights the potential of ultra-thin MXene film based LGUPTs for high precision photoacoustic therapy, integrated imaging and sensing instruments.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.