Role of radiomics in predicting early disease recurrence in locally advanced breast cancer patients: integration of radiomic features and RECIST criteria.

IF 9.7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Charlotte Trombadori, Edda Boccia, Elena Huong Tran, Antonio Franco, Armando Orlandi, Gianluca Franceschini, Luisa Carbognin, Alba Di Leone, Valeria Masiello, Fabio Marazzi, Antonella Palazzo, Ida Paris, Roberta Dattoli, Antonino Mulè, Nikola Dino Capocchiano, Diana Giannarelli, Riccardo Masetti, Paolo Belli, Luca Boldrini, Anna D'Angelo, Alessandra Fabi
{"title":"Role of radiomics in predicting early disease recurrence in locally advanced breast cancer patients: integration of radiomic features and RECIST criteria.","authors":"Charlotte Trombadori, Edda Boccia, Elena Huong Tran, Antonio Franco, Armando Orlandi, Gianluca Franceschini, Luisa Carbognin, Alba Di Leone, Valeria Masiello, Fabio Marazzi, Antonella Palazzo, Ida Paris, Roberta Dattoli, Antonino Mulè, Nikola Dino Capocchiano, Diana Giannarelli, Riccardo Masetti, Paolo Belli, Luca Boldrini, Anna D'Angelo, Alessandra Fabi","doi":"10.1007/s11547-025-01984-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breast cancer (BC) is a major global health issue with significant heterogeneity among its subtypes. Neoadjuvant treatment (NAT) has been extended to include early BC patients, particularly those with HER2 + and triple-negative subtypes, to achieve pathological complete response and improve long-term outcomes. However, disease recurrence remains a challenge, highlighting the need for predictive biomarkers. This study evaluates the role of radiomics from pre-treatment breast MRI, integrated with clinical and radiological variables, in predicting early disease recurrence (EDR) after NAT.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on 238 BC patients treated with NAT and assessed using pre- and post-treatment breast MRI. Radiomic features were extracted and combined with clinical and radiological data to develop predictive models for EDR. Models were evaluated using AUC, accuracy, sensitivity, and specificity metrics.</p><p><strong>Results: </strong>The radiological-radiomic model, which integrated pre-treatment MRI radiomics with RECIST response data, demonstrated the highest predictive performance for EDR (AUC 0.77, sensitivity 0.85). Internal validation confirmed the robustness of the model.</p><p><strong>Conclusion: </strong>Combining radiomic features from pre-NAT MRI with RECIST response evaluation from post-NAT MRI enhances the prediction of EDR in BC patients, supporting precision medicine in treatment strategies and follow-up planning. Further validation on larger cohorts is needed to confirm these findings.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-01984-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Breast cancer (BC) is a major global health issue with significant heterogeneity among its subtypes. Neoadjuvant treatment (NAT) has been extended to include early BC patients, particularly those with HER2 + and triple-negative subtypes, to achieve pathological complete response and improve long-term outcomes. However, disease recurrence remains a challenge, highlighting the need for predictive biomarkers. This study evaluates the role of radiomics from pre-treatment breast MRI, integrated with clinical and radiological variables, in predicting early disease recurrence (EDR) after NAT.

Methods: A retrospective analysis was conducted on 238 BC patients treated with NAT and assessed using pre- and post-treatment breast MRI. Radiomic features were extracted and combined with clinical and radiological data to develop predictive models for EDR. Models were evaluated using AUC, accuracy, sensitivity, and specificity metrics.

Results: The radiological-radiomic model, which integrated pre-treatment MRI radiomics with RECIST response data, demonstrated the highest predictive performance for EDR (AUC 0.77, sensitivity 0.85). Internal validation confirmed the robustness of the model.

Conclusion: Combining radiomic features from pre-NAT MRI with RECIST response evaluation from post-NAT MRI enhances the prediction of EDR in BC patients, supporting precision medicine in treatment strategies and follow-up planning. Further validation on larger cohorts is needed to confirm these findings.

放射组学在预测局部晚期乳腺癌患者早期疾病复发中的作用:放射组学特征与 RECIST 标准的整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiologia Medica
Radiologia Medica 医学-核医学
CiteScore
14.10
自引率
7.90%
发文量
133
审稿时长
4-8 weeks
期刊介绍: Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信