{"title":"MNN45 is involved in Zcf31-mediated cell surface integrity and chitosan susceptibility in Candida albicans.","authors":"Hao-Sen Chiang, Ji-Hong Chen, Yu-Ting Liao, Yu-Chun Peng, Chih-Chieh Hsu, Cai-Ling Ke, Chi-Ting Chung, Yu-Chiao Yeh, Hsiao-Yen Tsai, Ching-Hsuan Lin","doi":"10.1093/mmy/myaf025","DOIUrl":null,"url":null,"abstract":"<p><p>Candida albicans is a major human fungal pathogen; however, limited antifungal agents, undesirable drug side effects, and ineffective prevention of drug-resistant strains have become serious problems. Chitosan is a nontoxic, biodegradable, and biocompatible linear polysaccharide made from the deacetylation of chitin. In this study, a ZCF31 putative transcription factor gene was selected from a previous mutant library screen, as zcf31Δ strains exhibited defective cell growth in response to chitosan. Furthermore, chitosan caused notable damage to zcf31Δ cells; however, ZCF31 expression was not significantly changed by chitosan, suggesting that zcf31Δ is sensitive to chitosan could be due to changes in the physical properties of C. albicans. Indeed, zcf31Δ cells displayed significant increases in cell wall thickness. Consistent with the previous study, zcf31Δ strains were resistant to calcofluor white but highly susceptible to SDS (sodium dodecyl sulfate). These results implied that chitosan mainly influences membrane function, as zcf31Δ strengthens the stress resistance of the fungal cell wall but lessens cell membrane function. Interestingly, this effect on the cell surface mechanics of the C. albicans zcf31Δ strains was not responsible for the virulence-associated function. RNA-seq analysis further revealed that six mannosyltransferase-related genes were upregulated in zcf31Δ. Although five mannosyltransferase-related mutant strains in the zcf31Δ background partially reduced the cell wall thickness, only zcf31Δ/mnn45Δ showed the recovery of chitosan resistance. Our findings suggest that Zcf31 mediates a delicate and complicated dynamic balance between the cell membrane and cell wall architectures through the mannosyltransferase genes in C. albicans, leading to altered chitosan susceptibility.</p>","PeriodicalId":18586,"journal":{"name":"Medical mycology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical mycology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/mmy/myaf025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Candida albicans is a major human fungal pathogen; however, limited antifungal agents, undesirable drug side effects, and ineffective prevention of drug-resistant strains have become serious problems. Chitosan is a nontoxic, biodegradable, and biocompatible linear polysaccharide made from the deacetylation of chitin. In this study, a ZCF31 putative transcription factor gene was selected from a previous mutant library screen, as zcf31Δ strains exhibited defective cell growth in response to chitosan. Furthermore, chitosan caused notable damage to zcf31Δ cells; however, ZCF31 expression was not significantly changed by chitosan, suggesting that zcf31Δ is sensitive to chitosan could be due to changes in the physical properties of C. albicans. Indeed, zcf31Δ cells displayed significant increases in cell wall thickness. Consistent with the previous study, zcf31Δ strains were resistant to calcofluor white but highly susceptible to SDS (sodium dodecyl sulfate). These results implied that chitosan mainly influences membrane function, as zcf31Δ strengthens the stress resistance of the fungal cell wall but lessens cell membrane function. Interestingly, this effect on the cell surface mechanics of the C. albicans zcf31Δ strains was not responsible for the virulence-associated function. RNA-seq analysis further revealed that six mannosyltransferase-related genes were upregulated in zcf31Δ. Although five mannosyltransferase-related mutant strains in the zcf31Δ background partially reduced the cell wall thickness, only zcf31Δ/mnn45Δ showed the recovery of chitosan resistance. Our findings suggest that Zcf31 mediates a delicate and complicated dynamic balance between the cell membrane and cell wall architectures through the mannosyltransferase genes in C. albicans, leading to altered chitosan susceptibility.
期刊介绍:
Medical Mycology is a peer-reviewed international journal that focuses on original and innovative basic and applied studies, as well as learned reviews on all aspects of medical, veterinary and environmental mycology as related to disease. The objective is to present the highest quality scientific reports from throughout the world on divergent topics. These topics include the phylogeny of fungal pathogens, epidemiology and public health mycology themes, new approaches in the diagnosis and treatment of mycoses including clinical trials and guidelines, pharmacology and antifungal susceptibilities, changes in taxonomy, description of new or unusual fungi associated with human or animal disease, immunology of fungal infections, vaccinology for prevention of fungal infections, pathogenesis and virulence, and the molecular biology of pathogenic fungi in vitro and in vivo, including genomics, transcriptomics, metabolomics, and proteomics. Case reports are no longer accepted. In addition, studies of natural products showing inhibitory activity against pathogenic fungi are not accepted without chemical characterization and identification of the compounds responsible for the inhibitory activity.