miR-103 promotes esophageal squamous cell carcinoma metastasis by targeting FOXP1.

IF 1.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Min Huang, Jun Cai, Hai Zeng, Yan Zhu, Fan Zhang, Shuang Li
{"title":"miR-103 promotes esophageal squamous cell carcinoma metastasis by targeting FOXP1.","authors":"Min Huang, Jun Cai, Hai Zeng, Yan Zhu, Fan Zhang, Shuang Li","doi":"10.1080/15257770.2025.2478980","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC), a prevalent malignancy within the digestive tract, is associated with a significantly high mortality rate. MicroRNAs were already demonstrated to work in a wide range of tumors. The objective of the present research was to elucidate the involvement of miR-103 in the pathogenesis of ESCC and to explore its underlying mechanisms of action. Real-time quantitative polymerase chain reaction was used to detect miR-103 expressions in ESCC tissues and cells. The clinical significance of these expressions was assessed by a series of statistical analyses. Transwell assay was used to study the impact of miR-103 on migration and invasion ability of ESCC cells. Furthermore, a dual luciferase reporter gene method was adopted to study the association of miR-103 with the targeting of forkhead box protein 1 (FOXP1). miR-103 was significantly up-regulation in ESCC tissues and cell lines. Clinically, high miR-103 expression was associated with negative prognosis in ESCC. The low miR-103 expression significantly inhibited cell proliferation, migration and invasion in ESCC cell lines. Furthermore, miR-103 regulated the mechanism of action of ESCC by targeting FOXP1. In this study, we found that miR-103 may serve as a biomarker for ESCC prognosis. miR-103 may promote ESCC cell metastasis by targeting FOXP1. These studies may elucidate the potential of miR-103 as a novel target for the treatment of ESCC.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"1-14"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2025.2478980","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Esophageal squamous cell carcinoma (ESCC), a prevalent malignancy within the digestive tract, is associated with a significantly high mortality rate. MicroRNAs were already demonstrated to work in a wide range of tumors. The objective of the present research was to elucidate the involvement of miR-103 in the pathogenesis of ESCC and to explore its underlying mechanisms of action. Real-time quantitative polymerase chain reaction was used to detect miR-103 expressions in ESCC tissues and cells. The clinical significance of these expressions was assessed by a series of statistical analyses. Transwell assay was used to study the impact of miR-103 on migration and invasion ability of ESCC cells. Furthermore, a dual luciferase reporter gene method was adopted to study the association of miR-103 with the targeting of forkhead box protein 1 (FOXP1). miR-103 was significantly up-regulation in ESCC tissues and cell lines. Clinically, high miR-103 expression was associated with negative prognosis in ESCC. The low miR-103 expression significantly inhibited cell proliferation, migration and invasion in ESCC cell lines. Furthermore, miR-103 regulated the mechanism of action of ESCC by targeting FOXP1. In this study, we found that miR-103 may serve as a biomarker for ESCC prognosis. miR-103 may promote ESCC cell metastasis by targeting FOXP1. These studies may elucidate the potential of miR-103 as a novel target for the treatment of ESCC.

miR-103 通过靶向 FOXP1 促进食管鳞状细胞癌转移
食管鳞状细胞癌(ESCC)是消化道内一种常见的恶性肿瘤,死亡率极高。微RNA已被证实在多种肿瘤中发挥作用。本研究旨在阐明 miR-103 参与 ESCC 的发病机制,并探索其潜在的作用机制。研究采用实时定量聚合酶链反应来检测 ESCC 组织和细胞中 miR-103 的表达。通过一系列统计分析评估了这些表达的临床意义。研究人员利用Transwell试验研究了miR-103对ESCC细胞迁移和侵袭能力的影响。miR-103 在 ESCC 组织和细胞系中显著上调。在临床上,miR-103的高表达与ESCC的不良预后有关。低表达的 miR-103 能明显抑制 ESCC 细胞系的细胞增殖、迁移和侵袭。此外,miR-103 通过靶向 FOXP1 调节 ESCC 的作用机制。本研究发现,miR-103 可作为 ESCC 预后的生物标志物,miR-103 可通过靶向 FOXP1 促进 ESCC 细胞转移。这些研究可能会阐明 miR-103 作为治疗 ESCC 的新靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleosides, Nucleotides & Nucleic Acids
Nucleosides, Nucleotides & Nucleic Acids 生物-生化与分子生物学
CiteScore
2.60
自引率
7.70%
发文量
91
审稿时长
6 months
期刊介绍: Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids. Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信