Interspecies differences in lactate dehydrogenase and citrate synthase activity among damselfish and cardinalfish

IF 2.9 2区 生物学 Q2 BIOLOGY
Elliott Schmidt , Hunter Milles , Lauren Kennedy , Jennifer Donelson
{"title":"Interspecies differences in lactate dehydrogenase and citrate synthase activity among damselfish and cardinalfish","authors":"Elliott Schmidt ,&nbsp;Hunter Milles ,&nbsp;Lauren Kennedy ,&nbsp;Jennifer Donelson","doi":"10.1016/j.jtherbio.2025.104089","DOIUrl":null,"url":null,"abstract":"<div><div>Species with different thermal distributions, life-history traits, and behaviours have evolved physiological processes to suit energetic demands. Previous research has argued that these interspecies differences are often reflected in muscle enzyme activity that serve as proxies for aerobic and anaerobic respiration. Here, we measured the maximal enzyme activity of two enzymes, citrate synthase and lactate dehydrogenase, between two damselfish (<em>Pomacentrus</em>) and cardinalfish (<em>Ostorhinchus</em>) species. Citrate synthase was measured as a proxy for mitochondrial volume density, a marker of aerobic metabolism; lactate dehydrogenase was measured as a proxy for anaerobic energy production, a marker for anaerobic metabolism. Thermal performance curves of maximal enzyme activity were measured from 10 to 50 °C, at 10 °C intervals. Citrate synthase and lactate dehydrogenase both showed a positive correlation with temperature, that was absent of a plateau. Damselfish displayed higher levels of citate synthase maximal enzyme activity, while cardinalfish displayed a higher lactate dehydrogenase to citrate synthase ratio. <em>Ostorhinchus doederleini,</em> a sedentary cardinalfish, displayed higher level of lactate dehydrogenase maximal enzyme activity. Temperature coefficients (Q10) for lactate dehydrogenase showed a curved relationship, peaking at differences between 30 and 40 °C. No differences in Q10 values were observed between species, suggesting no difference in the thermal sensitivity of enzymes. Interspecies differences in maximal enzyme activity identified in this study compliments previous research, whereby more active species require higher levels of citrate synthase to fuel sustained swimming, as well as energetically demanding locomotion behaviours. Alternatively, more sedentary species possessed higher levels of lactate dehydrogenase and reliance on anaerobic metabolism, possibly due to an increased reliance on infrequent burst swimming behaviours.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"129 ","pages":"Article 104089"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456525000464","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Species with different thermal distributions, life-history traits, and behaviours have evolved physiological processes to suit energetic demands. Previous research has argued that these interspecies differences are often reflected in muscle enzyme activity that serve as proxies for aerobic and anaerobic respiration. Here, we measured the maximal enzyme activity of two enzymes, citrate synthase and lactate dehydrogenase, between two damselfish (Pomacentrus) and cardinalfish (Ostorhinchus) species. Citrate synthase was measured as a proxy for mitochondrial volume density, a marker of aerobic metabolism; lactate dehydrogenase was measured as a proxy for anaerobic energy production, a marker for anaerobic metabolism. Thermal performance curves of maximal enzyme activity were measured from 10 to 50 °C, at 10 °C intervals. Citrate synthase and lactate dehydrogenase both showed a positive correlation with temperature, that was absent of a plateau. Damselfish displayed higher levels of citate synthase maximal enzyme activity, while cardinalfish displayed a higher lactate dehydrogenase to citrate synthase ratio. Ostorhinchus doederleini, a sedentary cardinalfish, displayed higher level of lactate dehydrogenase maximal enzyme activity. Temperature coefficients (Q10) for lactate dehydrogenase showed a curved relationship, peaking at differences between 30 and 40 °C. No differences in Q10 values were observed between species, suggesting no difference in the thermal sensitivity of enzymes. Interspecies differences in maximal enzyme activity identified in this study compliments previous research, whereby more active species require higher levels of citrate synthase to fuel sustained swimming, as well as energetically demanding locomotion behaviours. Alternatively, more sedentary species possessed higher levels of lactate dehydrogenase and reliance on anaerobic metabolism, possibly due to an increased reliance on infrequent burst swimming behaviours.
大娘鱼和红心鱼乳酸脱氢酶和柠檬酸合成酶活性的种间差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of thermal biology
Journal of thermal biology 生物-动物学
CiteScore
5.30
自引率
7.40%
发文量
196
审稿时长
14.5 weeks
期刊介绍: The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are: • The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature • The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature • Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause • Effects of temperature on reproduction and development, growth, ageing and life-span • Studies on modelling heat transfer between organisms and their environment • The contributions of temperature to effects of climate change on animal species and man • Studies of conservation biology and physiology related to temperature • Behavioural and physiological regulation of body temperature including its pathophysiology and fever • Medical applications of hypo- and hyperthermia Article types: • Original articles • Review articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信